欠拟合模型的扩展期望最大化

Aref Miri Rekavandi, A. Seghouane, F. Boussaid, Bennamoun
{"title":"欠拟合模型的扩展期望最大化","authors":"Aref Miri Rekavandi, A. Seghouane, F. Boussaid, Bennamoun","doi":"10.1109/ICASSP49357.2023.10095526","DOIUrl":null,"url":null,"abstract":"In this paper, we generalize the well-known Expectation Maximization (EM) algorithm using the α−divergence for Gaussian Mixture Model (GMM). This approach is used in robust subspace detection when the number of parameters is kept small to avoid overfitting and large estimation variances. The level of robustness can be tuned by the parameter α. When α → 1, our method is equivalent to the standard EM approach and for α < 1 the method is robust against potential outliers. Simulation results show that the method outperforms the standard EM when it comes to mismatches between noise models and their realizations. In addition, we use the proposed method to detect active brain areas using collected functional Magnetic Resonance Imaging (fMRI) data during task-related experiments.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extended Expectation Maximization for Under-Fitted Models\",\"authors\":\"Aref Miri Rekavandi, A. Seghouane, F. Boussaid, Bennamoun\",\"doi\":\"10.1109/ICASSP49357.2023.10095526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we generalize the well-known Expectation Maximization (EM) algorithm using the α−divergence for Gaussian Mixture Model (GMM). This approach is used in robust subspace detection when the number of parameters is kept small to avoid overfitting and large estimation variances. The level of robustness can be tuned by the parameter α. When α → 1, our method is equivalent to the standard EM approach and for α < 1 the method is robust against potential outliers. Simulation results show that the method outperforms the standard EM when it comes to mismatches between noise models and their realizations. In addition, we use the proposed method to detect active brain areas using collected functional Magnetic Resonance Imaging (fMRI) data during task-related experiments.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10095526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用高斯混合模型(GMM)的α -散度对期望最大化(EM)算法进行了推广。该方法用于鲁棒子空间检测,当参数数量保持较小以避免过拟合和估计方差较大时。鲁棒性的水平可以通过参数α来调节。当α→1时,我们的方法与标准EM方法等效,当α < 1时,该方法对潜在异常值具有鲁棒性。仿真结果表明,该方法在处理噪声模型与实现之间的不匹配时优于标准电磁方法。此外,我们使用该方法在任务相关实验中使用收集的功能磁共振成像(fMRI)数据来检测大脑活动区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Expectation Maximization for Under-Fitted Models
In this paper, we generalize the well-known Expectation Maximization (EM) algorithm using the α−divergence for Gaussian Mixture Model (GMM). This approach is used in robust subspace detection when the number of parameters is kept small to avoid overfitting and large estimation variances. The level of robustness can be tuned by the parameter α. When α → 1, our method is equivalent to the standard EM approach and for α < 1 the method is robust against potential outliers. Simulation results show that the method outperforms the standard EM when it comes to mismatches between noise models and their realizations. In addition, we use the proposed method to detect active brain areas using collected functional Magnetic Resonance Imaging (fMRI) data during task-related experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信