Wataru Shibayama, Shuhei Shigaki, S. Takeda, R. Onishi, M. Nakajima, Rikimaru Sakamoto
{"title":"基于干显影漂洗工艺(DDRP)和材料(DDRM)的新型ArF扩展技术","authors":"Wataru Shibayama, Shuhei Shigaki, S. Takeda, R. Onishi, M. Nakajima, Rikimaru Sakamoto","doi":"10.1117/12.2219521","DOIUrl":null,"url":null,"abstract":"ArF lithography is still major process to develop N7/N5 devices. Especially in resist materials, DOF, roughness and CD uniformity are the biggest key parameters in fine pitches. To improve these issues, we newly propose to apply Dry Development Rinse Process (DDRP) and Materials (DDRM) as the ArF extension approach. In EUV lithography, DDRP is already one of the approaches to achieve high resolution. However, the performance of DDRP for ArF lithography was never demonstrated in detail. In this paper, we especially focus to improve DOF, CD uniformity and roughness by applying DDRP for ArF generation. Finally we succeeded to enhance every parameter at the same time by controlling DDRM etching condition. This new DDRP technology can be the promising approach for ArF extension stages in N7/N5 and beyond.","PeriodicalId":193904,"journal":{"name":"SPIE Advanced Lithography","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Novel ArF extension technique by applying Dry Development Rinse Process (DDRP) and Materials (DDRM)\",\"authors\":\"Wataru Shibayama, Shuhei Shigaki, S. Takeda, R. Onishi, M. Nakajima, Rikimaru Sakamoto\",\"doi\":\"10.1117/12.2219521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ArF lithography is still major process to develop N7/N5 devices. Especially in resist materials, DOF, roughness and CD uniformity are the biggest key parameters in fine pitches. To improve these issues, we newly propose to apply Dry Development Rinse Process (DDRP) and Materials (DDRM) as the ArF extension approach. In EUV lithography, DDRP is already one of the approaches to achieve high resolution. However, the performance of DDRP for ArF lithography was never demonstrated in detail. In this paper, we especially focus to improve DOF, CD uniformity and roughness by applying DDRP for ArF generation. Finally we succeeded to enhance every parameter at the same time by controlling DDRM etching condition. This new DDRP technology can be the promising approach for ArF extension stages in N7/N5 and beyond.\",\"PeriodicalId\":193904,\"journal\":{\"name\":\"SPIE Advanced Lithography\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2219521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2219521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel ArF extension technique by applying Dry Development Rinse Process (DDRP) and Materials (DDRM)
ArF lithography is still major process to develop N7/N5 devices. Especially in resist materials, DOF, roughness and CD uniformity are the biggest key parameters in fine pitches. To improve these issues, we newly propose to apply Dry Development Rinse Process (DDRP) and Materials (DDRM) as the ArF extension approach. In EUV lithography, DDRP is already one of the approaches to achieve high resolution. However, the performance of DDRP for ArF lithography was never demonstrated in detail. In this paper, we especially focus to improve DOF, CD uniformity and roughness by applying DDRP for ArF generation. Finally we succeeded to enhance every parameter at the same time by controlling DDRM etching condition. This new DDRP technology can be the promising approach for ArF extension stages in N7/N5 and beyond.