基于贝叶斯边际推理的统一模型信号处理方法

A. Quinn
{"title":"基于贝叶斯边际推理的统一模型信号处理方法","authors":"A. Quinn","doi":"10.1109/SSAP.1992.246857","DOIUrl":null,"url":null,"abstract":"The author adopts a strong Bayesian philosophy and derives the marginal inference for the nonlinear parameters in a general deterministic signal model, having integrated over the linear terms. The marginal inference is shown to embody Ockham's razor in an objective manner via the Ockham parameter inference. From this, a new definition of hypothesis complexity, is proposed. The marginal inference provides a means of testing the status of an alternative-free hypothesis, thereby unifying the detection and estimation tasks. Robust estimates may then be inferred below the thresholds for maximum likelihood estimation. The analysis is extended to a multi-hypothesis environment, using the example of a periodic model of unknown order. The fundamental frequency is estimated in a unified procedure which can either (i) simultaneously estimate the model order, or (ii) marginalize analytically over the model order. Both techniques confer improved inferential consistency and a much reduced numerical load when compared with the popular evidence-based technique, which is also described.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A unified approach to model-based signal processing using Bayesian marginal inference\",\"authors\":\"A. Quinn\",\"doi\":\"10.1109/SSAP.1992.246857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author adopts a strong Bayesian philosophy and derives the marginal inference for the nonlinear parameters in a general deterministic signal model, having integrated over the linear terms. The marginal inference is shown to embody Ockham's razor in an objective manner via the Ockham parameter inference. From this, a new definition of hypothesis complexity, is proposed. The marginal inference provides a means of testing the status of an alternative-free hypothesis, thereby unifying the detection and estimation tasks. Robust estimates may then be inferred below the thresholds for maximum likelihood estimation. The analysis is extended to a multi-hypothesis environment, using the example of a periodic model of unknown order. The fundamental frequency is estimated in a unified procedure which can either (i) simultaneously estimate the model order, or (ii) marginalize analytically over the model order. Both techniques confer improved inferential consistency and a much reduced numerical load when compared with the popular evidence-based technique, which is also described.<<ETX>>\",\"PeriodicalId\":309407,\"journal\":{\"name\":\"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1992.246857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1992.246857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

作者采用强贝叶斯理论,对一般确定性信号模型中的非线性参数,通过对线性项进行积分,导出了边缘推理。通过奥卡姆参数推理,证明了边际推理客观地体现了奥卡姆剃刀理论。在此基础上,提出了假设复杂性的新定义。边际推理提供了一种测试无可选假设状态的方法,从而统一了检测和估计任务。然后可以在最大似然估计的阈值以下推断出稳健估计。并以一个未知阶数的周期模型为例,将分析扩展到多假设环境。基频是在一个统一的程序中估计的,这个程序可以(i)同时估计模型阶数,或者(ii)在模型阶数上分析地边缘化。与流行的基于证据的技术相比,这两种技术都赋予了改进的推理一致性和大大减少的数值负荷,这也被描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified approach to model-based signal processing using Bayesian marginal inference
The author adopts a strong Bayesian philosophy and derives the marginal inference for the nonlinear parameters in a general deterministic signal model, having integrated over the linear terms. The marginal inference is shown to embody Ockham's razor in an objective manner via the Ockham parameter inference. From this, a new definition of hypothesis complexity, is proposed. The marginal inference provides a means of testing the status of an alternative-free hypothesis, thereby unifying the detection and estimation tasks. Robust estimates may then be inferred below the thresholds for maximum likelihood estimation. The analysis is extended to a multi-hypothesis environment, using the example of a periodic model of unknown order. The fundamental frequency is estimated in a unified procedure which can either (i) simultaneously estimate the model order, or (ii) marginalize analytically over the model order. Both techniques confer improved inferential consistency and a much reduced numerical load when compared with the popular evidence-based technique, which is also described.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信