差分私有逻辑回归的特征

S. Suthaharan
{"title":"差分私有逻辑回归的特征","authors":"S. Suthaharan","doi":"10.1145/3190645.3190682","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to present an approach that can help data owners select suitable values for the privacy parameter of a differentially private logistic regression (DPLR), whose main intention is to achieve a balance between privacy strength and classification accuracy. The proposed approach implements a supervised learning technique and a feature extraction technique to address this challenging problem and generate solutions. The supervised learning technique selects subspaces from a training data set and generates DPLR classifiers for a range of values of the privacy parameter. The feature extraction technique transforms an original subspace to a differentially private subspace by querying the original subspace multiple times using the DPLR model and the privacy parameter values that were selected by the supervised learning module. The proposed approach then employs a signal processing technique called signal-interference-ratio as a measure to quantify the privacy level of the differentially private subspaces; hence, allows data owner learn the privacy level that the DPLR models can provide for a given subspace and a given classification accuracy.","PeriodicalId":403177,"journal":{"name":"Proceedings of the ACMSE 2018 Conference","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterization of differentially private logistic regression\",\"authors\":\"S. Suthaharan\",\"doi\":\"10.1145/3190645.3190682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to present an approach that can help data owners select suitable values for the privacy parameter of a differentially private logistic regression (DPLR), whose main intention is to achieve a balance between privacy strength and classification accuracy. The proposed approach implements a supervised learning technique and a feature extraction technique to address this challenging problem and generate solutions. The supervised learning technique selects subspaces from a training data set and generates DPLR classifiers for a range of values of the privacy parameter. The feature extraction technique transforms an original subspace to a differentially private subspace by querying the original subspace multiple times using the DPLR model and the privacy parameter values that were selected by the supervised learning module. The proposed approach then employs a signal processing technique called signal-interference-ratio as a measure to quantify the privacy level of the differentially private subspaces; hence, allows data owner learn the privacy level that the DPLR models can provide for a given subspace and a given classification accuracy.\",\"PeriodicalId\":403177,\"journal\":{\"name\":\"Proceedings of the ACMSE 2018 Conference\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACMSE 2018 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3190645.3190682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACMSE 2018 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3190645.3190682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是提出一种方法,可以帮助数据所有者为差分私有逻辑回归(DPLR)的隐私参数选择合适的值,其主要目的是实现隐私强度和分类精度之间的平衡。该方法采用监督学习技术和特征提取技术来解决这一具有挑战性的问题并生成解决方案。监督学习技术从训练数据集中选择子空间,并为隐私参数的一系列值生成DPLR分类器。特征提取技术利用DPLR模型和监督学习模块选择的隐私参数值对原始子空间进行多次查询,将原始子空间转化为差分私有子空间。然后,该方法采用一种称为信号干扰比的信号处理技术作为度量来量化差分私有子空间的隐私级别;因此,允许数据所有者了解DPLR模型可以为给定子空间和给定分类精度提供的隐私级别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of differentially private logistic regression
The purpose of this paper is to present an approach that can help data owners select suitable values for the privacy parameter of a differentially private logistic regression (DPLR), whose main intention is to achieve a balance between privacy strength and classification accuracy. The proposed approach implements a supervised learning technique and a feature extraction technique to address this challenging problem and generate solutions. The supervised learning technique selects subspaces from a training data set and generates DPLR classifiers for a range of values of the privacy parameter. The feature extraction technique transforms an original subspace to a differentially private subspace by querying the original subspace multiple times using the DPLR model and the privacy parameter values that were selected by the supervised learning module. The proposed approach then employs a signal processing technique called signal-interference-ratio as a measure to quantify the privacy level of the differentially private subspaces; hence, allows data owner learn the privacy level that the DPLR models can provide for a given subspace and a given classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信