分形过程仿真建模方法与算法

Evgeniya Gospodinova
{"title":"分形过程仿真建模方法与算法","authors":"Evgeniya Gospodinova","doi":"10.55630/stem.2019.0107","DOIUrl":null,"url":null,"abstract":"The report presents methods and algorithms for simulation modelling of fractal processes. Fractal processes based on fractal Brownian motion, fractal Gaussian noise and, fractal Gaussian noise-wavelet transformation are simulated. Based on the performed comparative analysis of the algorithms for simulation modelling of fractal processes with respect to the accuracy parameter, it follows that the algorithms based on the models of fractal Gaussian noise and fractal Gaussian noise-wavelet transformation have the smallest relative error with respect to the Hurst parameter. The value of the Hurst parameter is one of the most important characteristics determining the degree of self-similarity of fractal processes. The considered algorithms based on these two models can be applied for modelling of physiological data, including cardiological data, because they have fractal properties.","PeriodicalId":183669,"journal":{"name":"Innovative STEM Education","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods and Algorithms for Simulation Modelling of Fractal Processes\",\"authors\":\"Evgeniya Gospodinova\",\"doi\":\"10.55630/stem.2019.0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The report presents methods and algorithms for simulation modelling of fractal processes. Fractal processes based on fractal Brownian motion, fractal Gaussian noise and, fractal Gaussian noise-wavelet transformation are simulated. Based on the performed comparative analysis of the algorithms for simulation modelling of fractal processes with respect to the accuracy parameter, it follows that the algorithms based on the models of fractal Gaussian noise and fractal Gaussian noise-wavelet transformation have the smallest relative error with respect to the Hurst parameter. The value of the Hurst parameter is one of the most important characteristics determining the degree of self-similarity of fractal processes. The considered algorithms based on these two models can be applied for modelling of physiological data, including cardiological data, because they have fractal properties.\",\"PeriodicalId\":183669,\"journal\":{\"name\":\"Innovative STEM Education\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovative STEM Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55630/stem.2019.0107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative STEM Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/stem.2019.0107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了分形过程仿真建模的方法和算法。模拟了基于分形布朗运动、分形高斯噪声和分形高斯噪声-小波变换的分形过程。通过对分形过程仿真建模算法在精度参数上的比较分析,得出基于分形高斯噪声模型和基于分形高斯噪声-小波变换模型的算法在Hurst参数上的相对误差最小。赫斯特参数的取值是决定分形过程自相似程度的重要特征之一。基于这两种模型的考虑算法可以应用于生理数据的建模,包括心脏病数据,因为它们具有分形特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods and Algorithms for Simulation Modelling of Fractal Processes
The report presents methods and algorithms for simulation modelling of fractal processes. Fractal processes based on fractal Brownian motion, fractal Gaussian noise and, fractal Gaussian noise-wavelet transformation are simulated. Based on the performed comparative analysis of the algorithms for simulation modelling of fractal processes with respect to the accuracy parameter, it follows that the algorithms based on the models of fractal Gaussian noise and fractal Gaussian noise-wavelet transformation have the smallest relative error with respect to the Hurst parameter. The value of the Hurst parameter is one of the most important characteristics determining the degree of self-similarity of fractal processes. The considered algorithms based on these two models can be applied for modelling of physiological data, including cardiological data, because they have fractal properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信