科学云工作流的协同模糊聚类方法

Hamdi Kchaou, Wissem Abbes, Zied Kechaou, A. Alimi
{"title":"科学云工作流的协同模糊聚类方法","authors":"Hamdi Kchaou, Wissem Abbes, Zied Kechaou, A. Alimi","doi":"10.1109/ISCC58397.2023.10218274","DOIUrl":null,"url":null,"abstract":"Cloud computing has allowed the sharing of applications with a lot of data, like scientific workflows. Using scientific workflows to process big data is expensive regarding data transfer, execution time, and bandwidth costs. A data placement method based on fuzzy sets is used to cut these costs. It helps optimize data placement and reduce the costs of processing big data. This paper presents a new method for scientific cloud workflow data placement involving fuzzy sets to realize collaborative clustering. The proposed method explores each data center's datasets through data dependencies, clusters them by the clustering algorithm Fuzzy C-Means (FCM), and re-clusters them based on the data collaboration. Our suggested method of using fuzzy sets to realize collaborative clustering can help cope with uncertainties in data and thus reduce the overall data placement amounts, with better results than previous approaches.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Fuzzy Clustering Approach for Scientific Cloud Workflows\",\"authors\":\"Hamdi Kchaou, Wissem Abbes, Zied Kechaou, A. Alimi\",\"doi\":\"10.1109/ISCC58397.2023.10218274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing has allowed the sharing of applications with a lot of data, like scientific workflows. Using scientific workflows to process big data is expensive regarding data transfer, execution time, and bandwidth costs. A data placement method based on fuzzy sets is used to cut these costs. It helps optimize data placement and reduce the costs of processing big data. This paper presents a new method for scientific cloud workflow data placement involving fuzzy sets to realize collaborative clustering. The proposed method explores each data center's datasets through data dependencies, clusters them by the clustering algorithm Fuzzy C-Means (FCM), and re-clusters them based on the data collaboration. Our suggested method of using fuzzy sets to realize collaborative clustering can help cope with uncertainties in data and thus reduce the overall data placement amounts, with better results than previous approaches.\",\"PeriodicalId\":265337,\"journal\":{\"name\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC58397.2023.10218274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

云计算允许共享具有大量数据的应用程序,比如科学工作流程。使用科学的工作流来处理大数据在数据传输、执行时间和带宽成本方面是昂贵的。采用基于模糊集的数据放置方法来降低这些成本。它有助于优化数据放置,降低处理大数据的成本。提出了一种利用模糊集实现协同聚类的科学云工作流数据放置新方法。该方法通过数据依赖关系对各个数据中心的数据集进行挖掘,利用模糊c均值聚类算法对数据集进行聚类,并基于数据协作对数据集进行重新聚类。我们提出的使用模糊集实现协同聚类的方法,可以帮助处理数据中的不确定性,从而减少总体数据放置量,效果优于以往的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative Fuzzy Clustering Approach for Scientific Cloud Workflows
Cloud computing has allowed the sharing of applications with a lot of data, like scientific workflows. Using scientific workflows to process big data is expensive regarding data transfer, execution time, and bandwidth costs. A data placement method based on fuzzy sets is used to cut these costs. It helps optimize data placement and reduce the costs of processing big data. This paper presents a new method for scientific cloud workflow data placement involving fuzzy sets to realize collaborative clustering. The proposed method explores each data center's datasets through data dependencies, clusters them by the clustering algorithm Fuzzy C-Means (FCM), and re-clusters them based on the data collaboration. Our suggested method of using fuzzy sets to realize collaborative clustering can help cope with uncertainties in data and thus reduce the overall data placement amounts, with better results than previous approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信