BAMTGAN:表格数据的平衡增强技术

Jueun Jeong, Han-Gyul Jeong, Han-joon Kim
{"title":"BAMTGAN:表格数据的平衡增强技术","authors":"Jueun Jeong, Han-Gyul Jeong, Han-joon Kim","doi":"10.1109/ICASI57738.2023.10179533","DOIUrl":null,"url":null,"abstract":"This paper presents BAMTGAN, a novel data augmentation technique that addresses the class imbalance problem and prevents mode collapse by utilizing a modified DCGAN model and a new similarity loss to generate diverse and realistic tabular data. BAMTGAN encodes each column to produce a feature map for each record, which is then converted back to its original tabular form an intermediate image format. Experimental results demonstrate that BAMTGAN provides a more substantial improvement in developing high-quality predictive models than existing augmentation methods. Github: https://github.com/uos-dmlab/Structured-Data-Augmentation.git","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BAMTGAN: A Balanced Augmentation Technique for Tabular Data\",\"authors\":\"Jueun Jeong, Han-Gyul Jeong, Han-joon Kim\",\"doi\":\"10.1109/ICASI57738.2023.10179533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents BAMTGAN, a novel data augmentation technique that addresses the class imbalance problem and prevents mode collapse by utilizing a modified DCGAN model and a new similarity loss to generate diverse and realistic tabular data. BAMTGAN encodes each column to produce a feature map for each record, which is then converted back to its original tabular form an intermediate image format. Experimental results demonstrate that BAMTGAN provides a more substantial improvement in developing high-quality predictive models than existing augmentation methods. Github: https://github.com/uos-dmlab/Structured-Data-Augmentation.git\",\"PeriodicalId\":281254,\"journal\":{\"name\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASI57738.2023.10179533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

BAMTGAN是一种新的数据增强技术,它利用改进的DCGAN模型和新的相似度损失来生成多样化和逼真的表格数据,解决了类不平衡问题,防止了模式崩溃。BAMTGAN对每一列进行编码,生成每条记录的特征图,然后将其转换回原始表格形式,即中间图像格式。实验结果表明,与现有的增强方法相比,BAMTGAN在开发高质量预测模型方面提供了更大的改进。Github: https://github.com/uos-dmlab/Structured-Data-Augmentation.git
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BAMTGAN: A Balanced Augmentation Technique for Tabular Data
This paper presents BAMTGAN, a novel data augmentation technique that addresses the class imbalance problem and prevents mode collapse by utilizing a modified DCGAN model and a new similarity loss to generate diverse and realistic tabular data. BAMTGAN encodes each column to produce a feature map for each record, which is then converted back to its original tabular form an intermediate image format. Experimental results demonstrate that BAMTGAN provides a more substantial improvement in developing high-quality predictive models than existing augmentation methods. Github: https://github.com/uos-dmlab/Structured-Data-Augmentation.git
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信