基于深度学习的癌症分子亚型分类研究综述

Mehwish Wahid, Ghufran Ahmed, Shahid Hussain, Asad Ahmed Ansari
{"title":"基于深度学习的癌症分子亚型分类研究综述","authors":"Mehwish Wahid, Ghufran Ahmed, Shahid Hussain, Asad Ahmed Ansari","doi":"10.1109/iCoMET57998.2023.10099055","DOIUrl":null,"url":null,"abstract":"Deep learning(DL) is a sub-field of artificial intelligence that mimics the human brain through computation. It has proven its proficiency in different domains, including healthcare. It has shown promising results in various health-care applications, including cancer classification, prognosis, and molecular sub-typing of cancer. Molecular sub-typing provides biological insights regarding cancer heterogeneity that may lead to personalized medicines. The objective of this review is to discuss and compare the different deep learning models used for molecular subtyping along with the different types of omics data used like gene expression data, RNA sequence data, mRNA, and miRNA. We compared and summarized the different models and data types used for the cancer molecular subtyping in a tabular format.","PeriodicalId":369792,"journal":{"name":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey on Cancer Molecular Subtype Classification using Deep learning\",\"authors\":\"Mehwish Wahid, Ghufran Ahmed, Shahid Hussain, Asad Ahmed Ansari\",\"doi\":\"10.1109/iCoMET57998.2023.10099055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning(DL) is a sub-field of artificial intelligence that mimics the human brain through computation. It has proven its proficiency in different domains, including healthcare. It has shown promising results in various health-care applications, including cancer classification, prognosis, and molecular sub-typing of cancer. Molecular sub-typing provides biological insights regarding cancer heterogeneity that may lead to personalized medicines. The objective of this review is to discuss and compare the different deep learning models used for molecular subtyping along with the different types of omics data used like gene expression data, RNA sequence data, mRNA, and miRNA. We compared and summarized the different models and data types used for the cancer molecular subtyping in a tabular format.\",\"PeriodicalId\":369792,\"journal\":{\"name\":\"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCoMET57998.2023.10099055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET57998.2023.10099055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)是人工智能的一个分支,通过计算模拟人类的大脑。它已经证明了自己在不同领域的熟练程度,包括医疗保健。它在癌症分类、预后和癌症分子分型等各种医疗保健应用中显示出良好的效果。分子分型提供了关于癌症异质性的生物学见解,可能导致个性化药物。本综述的目的是讨论和比较用于分子分型的不同深度学习模型以及不同类型的组学数据,如基因表达数据、RNA序列数据、mRNA和miRNA。我们以表格形式比较和总结了用于癌症分子分型的不同模型和数据类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Cancer Molecular Subtype Classification using Deep learning
Deep learning(DL) is a sub-field of artificial intelligence that mimics the human brain through computation. It has proven its proficiency in different domains, including healthcare. It has shown promising results in various health-care applications, including cancer classification, prognosis, and molecular sub-typing of cancer. Molecular sub-typing provides biological insights regarding cancer heterogeneity that may lead to personalized medicines. The objective of this review is to discuss and compare the different deep learning models used for molecular subtyping along with the different types of omics data used like gene expression data, RNA sequence data, mRNA, and miRNA. We compared and summarized the different models and data types used for the cancer molecular subtyping in a tabular format.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信