基于稀疏贝叶斯学习的块稀疏信号压缩感知恢复算法

Wen Wang, Jia Min, Guo Qing
{"title":"基于稀疏贝叶斯学习的块稀疏信号压缩感知恢复算法","authors":"Wen Wang, Jia Min, Guo Qing","doi":"10.1109/WPMC.2014.7014878","DOIUrl":null,"url":null,"abstract":"Compressive sensing offers a new wideband spectrum sensing scheme in cognitive radio. In this paper, a sparse signal recovery algorithm based on sparse Bayesian learning (SBL) framework is proposed. By exploiting intrablock correlation in a block sparse model and using Expectation-Maximization (EM) method, this algorithm achieves superior performance. The results of experiments show that this algorithm is robust to noise and has better performance than other algorithms in signal recovery. Then we apply it to wideband spectrum sensing, we find that proposed algorithm not only guarantees accurate signal estimation, but also obtains higher correct detection probability.","PeriodicalId":387598,"journal":{"name":"International Symposium on Wireless Personal Multimedia Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A compressive sensing recovery algorithm based on sparse Bayesian learning for block sparse signal\",\"authors\":\"Wen Wang, Jia Min, Guo Qing\",\"doi\":\"10.1109/WPMC.2014.7014878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing offers a new wideband spectrum sensing scheme in cognitive radio. In this paper, a sparse signal recovery algorithm based on sparse Bayesian learning (SBL) framework is proposed. By exploiting intrablock correlation in a block sparse model and using Expectation-Maximization (EM) method, this algorithm achieves superior performance. The results of experiments show that this algorithm is robust to noise and has better performance than other algorithms in signal recovery. Then we apply it to wideband spectrum sensing, we find that proposed algorithm not only guarantees accurate signal estimation, but also obtains higher correct detection probability.\",\"PeriodicalId\":387598,\"journal\":{\"name\":\"International Symposium on Wireless Personal Multimedia Communications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Wireless Personal Multimedia Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPMC.2014.7014878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Wireless Personal Multimedia Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPMC.2014.7014878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

压缩感知为认知无线电提供了一种新的宽带频谱感知方案。该算法利用块稀疏模型中的块内相关性,并采用期望最大化(EM)方法,取得了较好的性能。实验结果表明,该算法对噪声具有较强的鲁棒性,在信号恢复方面具有较好的性能。然后将其应用于宽带频谱感知,发现该算法不仅保证了信号的准确估计,而且获得了更高的正确检测概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A compressive sensing recovery algorithm based on sparse Bayesian learning for block sparse signal
Compressive sensing offers a new wideband spectrum sensing scheme in cognitive radio. In this paper, a sparse signal recovery algorithm based on sparse Bayesian learning (SBL) framework is proposed. By exploiting intrablock correlation in a block sparse model and using Expectation-Maximization (EM) method, this algorithm achieves superior performance. The results of experiments show that this algorithm is robust to noise and has better performance than other algorithms in signal recovery. Then we apply it to wideband spectrum sensing, we find that proposed algorithm not only guarantees accurate signal estimation, but also obtains higher correct detection probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信