图像搜索系统

P. Cho, Michael Yee
{"title":"图像搜索系统","authors":"P. Cho, Michael Yee","doi":"10.1109/AIPR.2012.6528193","DOIUrl":null,"url":null,"abstract":"We present a prototype system which enables users to explore the global structure for digital imagery archives as well as drill-down into individual pictures. Our search engine builds upon computer vision advances made over the past decade in low-level feature matching, large data handling and object recognition. We demonstrate hierarchical clustering among images semi-cooperatively shot around MIT, automatic linking of flickr photos and aerial frames from the Grand Canyon, and video segment identification for a TV broadcast. Moreover, our software tools incorporate visible vs infrared band selection, color content quantization and human face detection. Ongoing and future extensions of this image search system are discussed.","PeriodicalId":406942,"journal":{"name":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image search system\",\"authors\":\"P. Cho, Michael Yee\",\"doi\":\"10.1109/AIPR.2012.6528193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a prototype system which enables users to explore the global structure for digital imagery archives as well as drill-down into individual pictures. Our search engine builds upon computer vision advances made over the past decade in low-level feature matching, large data handling and object recognition. We demonstrate hierarchical clustering among images semi-cooperatively shot around MIT, automatic linking of flickr photos and aerial frames from the Grand Canyon, and video segment identification for a TV broadcast. Moreover, our software tools incorporate visible vs infrared band selection, color content quantization and human face detection. Ongoing and future extensions of this image search system are discussed.\",\"PeriodicalId\":406942,\"journal\":{\"name\":\"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2012.6528193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2012.6528193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个原型系统,使用户能够探索数字图像档案的全局结构,以及深入到单个图片。我们的搜索引擎建立在过去十年中在低水平特征匹配、大数据处理和目标识别方面取得的计算机视觉进步的基础上。我们演示了在麻省理工学院半合作拍摄的图像之间的分层聚类,flickr照片和大峡谷航拍帧的自动链接,以及电视广播的视频片段识别。此外,我们的软件工具包括可见光和红外波段选择,颜色内容量化和人脸检测。讨论了该图像搜索系统正在进行的和未来的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image search system
We present a prototype system which enables users to explore the global structure for digital imagery archives as well as drill-down into individual pictures. Our search engine builds upon computer vision advances made over the past decade in low-level feature matching, large data handling and object recognition. We demonstrate hierarchical clustering among images semi-cooperatively shot around MIT, automatic linking of flickr photos and aerial frames from the Grand Canyon, and video segment identification for a TV broadcast. Moreover, our software tools incorporate visible vs infrared band selection, color content quantization and human face detection. Ongoing and future extensions of this image search system are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信