Marcos Paulo Rocha, F. França, A. S. Nery, Leandro S. Guedes
{"title":"流处理的数据流编程","authors":"Marcos Paulo Rocha, F. França, A. S. Nery, Leandro S. Guedes","doi":"10.1109/SBAC-PADW.2017.26","DOIUrl":null,"url":null,"abstract":"Stream processing applications have high-demanding performance requirements that are hard to tackle using traditional parallel models on modern many-core architectures, such as GPUs. On the other hand, recent dataflow computing models can naturally exploit parallelism for a wide class of applications. This work presents an extension to an existing dataflow library for Java. The library extension implements high-level constructs with multiple command queues to enable the superposition of memory operations and kernel executions on GPUs. Experimental results show that significant speedup can be achieved for a subset of well-known stream processing applications: Volume Ray-Casting, Path-Tracing and Sobel Filter.","PeriodicalId":325990,"journal":{"name":"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dataflow Programming for Stream Processing\",\"authors\":\"Marcos Paulo Rocha, F. França, A. S. Nery, Leandro S. Guedes\",\"doi\":\"10.1109/SBAC-PADW.2017.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stream processing applications have high-demanding performance requirements that are hard to tackle using traditional parallel models on modern many-core architectures, such as GPUs. On the other hand, recent dataflow computing models can naturally exploit parallelism for a wide class of applications. This work presents an extension to an existing dataflow library for Java. The library extension implements high-level constructs with multiple command queues to enable the superposition of memory operations and kernel executions on GPUs. Experimental results show that significant speedup can be achieved for a subset of well-known stream processing applications: Volume Ray-Casting, Path-Tracing and Sobel Filter.\",\"PeriodicalId\":325990,\"journal\":{\"name\":\"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PADW.2017.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PADW.2017.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stream processing applications have high-demanding performance requirements that are hard to tackle using traditional parallel models on modern many-core architectures, such as GPUs. On the other hand, recent dataflow computing models can naturally exploit parallelism for a wide class of applications. This work presents an extension to an existing dataflow library for Java. The library extension implements high-level constructs with multiple command queues to enable the superposition of memory operations and kernel executions on GPUs. Experimental results show that significant speedup can be achieved for a subset of well-known stream processing applications: Volume Ray-Casting, Path-Tracing and Sobel Filter.