用tesla GPU直接求解岩浆中(11,9,8)-MinRank问题

A. Steel
{"title":"用tesla GPU直接求解岩浆中(11,9,8)-MinRank问题","authors":"A. Steel","doi":"10.1145/2790282.2791392","DOIUrl":null,"url":null,"abstract":"We show how some very large multivariate polynomial systems over finite fields can be solved by Gröbner basis techniques coupled with the Block Wiedemann algorithm, thus extending the Wiedemann-based 'Sparse FGLM' approach of Faugère and Mou. The main components of our approach are a dense variant of the Faugère F4 Gröbner basis algorithm and the Block Wiedemann algorithm, which have been implemented within the Magma Computer Algebra System (released in version V2.20 in late 2014). A major feature of the algorithms is that they map much of the computation to dense matrix multiplication, and this allows dramatic speedups to be achieved for large examples when an Nvidia Tesla GPU is available. As a result, the Magma implementation can directly solve a 16-bit random instance of the Courtois (11,9,8)-MinRank Challenge C in about 15.1 hours with a single Intel Sandybridge CPU core coupled with an Nvidia Tesla K40 GPU.","PeriodicalId":384227,"journal":{"name":"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Direct solution of the (11,9,8)-MinRank problem by the block Wiedemann algorithm in magma with a tesla GPU\",\"authors\":\"A. Steel\",\"doi\":\"10.1145/2790282.2791392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how some very large multivariate polynomial systems over finite fields can be solved by Gröbner basis techniques coupled with the Block Wiedemann algorithm, thus extending the Wiedemann-based 'Sparse FGLM' approach of Faugère and Mou. The main components of our approach are a dense variant of the Faugère F4 Gröbner basis algorithm and the Block Wiedemann algorithm, which have been implemented within the Magma Computer Algebra System (released in version V2.20 in late 2014). A major feature of the algorithms is that they map much of the computation to dense matrix multiplication, and this allows dramatic speedups to be achieved for large examples when an Nvidia Tesla GPU is available. As a result, the Magma implementation can directly solve a 16-bit random instance of the Courtois (11,9,8)-MinRank Challenge C in about 15.1 hours with a single Intel Sandybridge CPU core coupled with an Nvidia Tesla K40 GPU.\",\"PeriodicalId\":384227,\"journal\":{\"name\":\"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2790282.2791392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2790282.2791392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们展示了如何通过Gröbner基技术与块Wiedemann算法相结合来解决有限域上的一些非常大的多元多项式系统,从而扩展了faug和Mou的基于Wiedemann的“稀疏FGLM”方法。我们方法的主要组成部分是faug F4 Gröbner基算法和Block Wiedemann算法的密集变体,它们已经在Magma计算机代数系统(2014年底发布的V2.20版本)中实现。这些算法的一个主要特点是,它们将大部分计算映射到密集矩阵乘法上,当Nvidia Tesla GPU可用时,这使得大型示例可以实现显着的加速。因此,Magma实现可以在大约15.1小时内使用单个Intel Sandybridge CPU核心和Nvidia Tesla K40 GPU直接解决Courtois (11,9,8)-MinRank Challenge C的16位随机实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct solution of the (11,9,8)-MinRank problem by the block Wiedemann algorithm in magma with a tesla GPU
We show how some very large multivariate polynomial systems over finite fields can be solved by Gröbner basis techniques coupled with the Block Wiedemann algorithm, thus extending the Wiedemann-based 'Sparse FGLM' approach of Faugère and Mou. The main components of our approach are a dense variant of the Faugère F4 Gröbner basis algorithm and the Block Wiedemann algorithm, which have been implemented within the Magma Computer Algebra System (released in version V2.20 in late 2014). A major feature of the algorithms is that they map much of the computation to dense matrix multiplication, and this allows dramatic speedups to be achieved for large examples when an Nvidia Tesla GPU is available. As a result, the Magma implementation can directly solve a 16-bit random instance of the Courtois (11,9,8)-MinRank Challenge C in about 15.1 hours with a single Intel Sandybridge CPU core coupled with an Nvidia Tesla K40 GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信