基于蛋白质相互作用的特征提取

I. Alsmadi, S. Bettayeb
{"title":"基于蛋白质相互作用的特征提取","authors":"I. Alsmadi, S. Bettayeb","doi":"10.1504/IJBRA.2017.10006935","DOIUrl":null,"url":null,"abstract":"Protein and DNA features extraction represents an interesting research subject for a wide range of relevant applications. In this paper, we evaluated interactions in genes and diseases by modelling them as social networks. We introduced weighted cliques to indicate patterns of those interactions and distinguish the relations between different vertices based on their strengths or levels of interactions. We used those patterns as features and evaluate their value in comparison with other feature extraction existing approaches.","PeriodicalId":434900,"journal":{"name":"Int. J. Bioinform. Res. Appl.","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein interaction based features' extraction\",\"authors\":\"I. Alsmadi, S. Bettayeb\",\"doi\":\"10.1504/IJBRA.2017.10006935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein and DNA features extraction represents an interesting research subject for a wide range of relevant applications. In this paper, we evaluated interactions in genes and diseases by modelling them as social networks. We introduced weighted cliques to indicate patterns of those interactions and distinguish the relations between different vertices based on their strengths or levels of interactions. We used those patterns as features and evaluate their value in comparison with other feature extraction existing approaches.\",\"PeriodicalId\":434900,\"journal\":{\"name\":\"Int. J. Bioinform. Res. Appl.\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bioinform. Res. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBRA.2017.10006935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bioinform. Res. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2017.10006935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质和DNA特征提取是一个有趣的研究课题,具有广泛的相关应用。在本文中,我们通过将基因和疾病建模为社会网络来评估它们之间的相互作用。我们引入加权团来指示这些相互作用的模式,并根据它们的强度或相互作用水平区分不同顶点之间的关系。我们使用这些模式作为特征,并与其他现有的特征提取方法进行比较,评估它们的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein interaction based features' extraction
Protein and DNA features extraction represents an interesting research subject for a wide range of relevant applications. In this paper, we evaluated interactions in genes and diseases by modelling them as social networks. We introduced weighted cliques to indicate patterns of those interactions and distinguish the relations between different vertices based on their strengths or levels of interactions. We used those patterns as features and evaluate their value in comparison with other feature extraction existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信