制造工作站自动错误恢复诊断启发式的生成

S. Chang, F. DiCesare
{"title":"制造工作站自动错误恢复诊断启发式的生成","authors":"S. Chang, F. DiCesare","doi":"10.1109/ROBOT.1989.100039","DOIUrl":null,"url":null,"abstract":"The authors describe an approach using machine learning for developing heuristics to be used in diagnosis for automated error recovery in manufacturing systems. This approach can automatically generate diagnostic heuristics for error hypotheses. The approach is based on the integration of set covering and explanation-based learning. In this way, the diagnostic heuristics can be automatically generated and the competing errors can be narrowed down, if not identified. In addition, the set covering concept is potentially useful for diagnostic problems, since it provides a solution to the problem of multiple simultaneous errors. The set covering theory and the theoretical development based on the approach for diagnosing the error and for automatically generating diagnostic heuristics are given. The authors also propose an approach for future research to extract discriminating knowledge for the competing errors when set covering is incapable of identifying the error. A discussion of results thus far obtained, accompanied by simple examples to illustrate those results, is presented.<<ETX>>","PeriodicalId":114394,"journal":{"name":"Proceedings, 1989 International Conference on Robotics and Automation","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"The generation of diagnostic heuristics for automated error recovery in manufacturing workstations\",\"authors\":\"S. Chang, F. DiCesare\",\"doi\":\"10.1109/ROBOT.1989.100039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe an approach using machine learning for developing heuristics to be used in diagnosis for automated error recovery in manufacturing systems. This approach can automatically generate diagnostic heuristics for error hypotheses. The approach is based on the integration of set covering and explanation-based learning. In this way, the diagnostic heuristics can be automatically generated and the competing errors can be narrowed down, if not identified. In addition, the set covering concept is potentially useful for diagnostic problems, since it provides a solution to the problem of multiple simultaneous errors. The set covering theory and the theoretical development based on the approach for diagnosing the error and for automatically generating diagnostic heuristics are given. The authors also propose an approach for future research to extract discriminating knowledge for the competing errors when set covering is incapable of identifying the error. A discussion of results thus far obtained, accompanied by simple examples to illustrate those results, is presented.<<ETX>>\",\"PeriodicalId\":114394,\"journal\":{\"name\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1989.100039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings, 1989 International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1989.100039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

作者描述了一种使用机器学习开发启发式的方法,用于制造系统中自动错误恢复的诊断。该方法可以自动生成错误假设的诊断启发式。该方法基于集合覆盖和基于解释的学习的整合。通过这种方式,可以自动生成诊断启发式,如果无法识别,则可以缩小竞争错误。此外,集合覆盖概念对于诊断问题可能很有用,因为它为多个同时发生的错误问题提供了解决方案。给出了集覆盖理论以及基于错误诊断和诊断启发式自动生成方法的理论发展。作者还提出了一种在集合覆盖无法识别竞争错误时提取判别知识的方法。本文讨论了迄今为止得到的结果,并附有简单的例子来说明这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The generation of diagnostic heuristics for automated error recovery in manufacturing workstations
The authors describe an approach using machine learning for developing heuristics to be used in diagnosis for automated error recovery in manufacturing systems. This approach can automatically generate diagnostic heuristics for error hypotheses. The approach is based on the integration of set covering and explanation-based learning. In this way, the diagnostic heuristics can be automatically generated and the competing errors can be narrowed down, if not identified. In addition, the set covering concept is potentially useful for diagnostic problems, since it provides a solution to the problem of multiple simultaneous errors. The set covering theory and the theoretical development based on the approach for diagnosing the error and for automatically generating diagnostic heuristics are given. The authors also propose an approach for future research to extract discriminating knowledge for the competing errors when set covering is incapable of identifying the error. A discussion of results thus far obtained, accompanied by simple examples to illustrate those results, is presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信