{"title":"级联pi控制dc/dc升压变换器的非线性设计与稳定性分析及实验验证","authors":"K. F. Krommydas, A. Alexandridis","doi":"10.1109/CDC.2015.7403008","DOIUrl":null,"url":null,"abstract":"Nonlinear proportional-integral cascaded controllers that guarantee stability are proposed for the challenging problem of regulating the output voltage of dc/dc boost power converters. In order to examine whether the proposed controllers can achieve stable operation, a novel stability analysis is introduced, which incorporates the advanced nonlinear concept of input-to-state stability and exploits the cascaded structure of the closed-loop system. This new methodology succeeds in proving asymptotic stability of the complete closed-loop system, under the only constraint of selecting negative feedback-loops. However, since the cascaded controller design is based on the time-scale separation assumption, a systematic tuning method is conducted for the accurate gain selection of both the inner-loop and outer-loop controllers. Finally, the theoretical analysis and the system performance are fully verified by simulation results which are further validated by experimental tests.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nonlinear design and stability analysis with experimental validation of cascaded pi controlled dc/dc boost converters\",\"authors\":\"K. F. Krommydas, A. Alexandridis\",\"doi\":\"10.1109/CDC.2015.7403008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear proportional-integral cascaded controllers that guarantee stability are proposed for the challenging problem of regulating the output voltage of dc/dc boost power converters. In order to examine whether the proposed controllers can achieve stable operation, a novel stability analysis is introduced, which incorporates the advanced nonlinear concept of input-to-state stability and exploits the cascaded structure of the closed-loop system. This new methodology succeeds in proving asymptotic stability of the complete closed-loop system, under the only constraint of selecting negative feedback-loops. However, since the cascaded controller design is based on the time-scale separation assumption, a systematic tuning method is conducted for the accurate gain selection of both the inner-loop and outer-loop controllers. Finally, the theoretical analysis and the system performance are fully verified by simulation results which are further validated by experimental tests.\",\"PeriodicalId\":308101,\"journal\":{\"name\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2015.7403008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7403008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear design and stability analysis with experimental validation of cascaded pi controlled dc/dc boost converters
Nonlinear proportional-integral cascaded controllers that guarantee stability are proposed for the challenging problem of regulating the output voltage of dc/dc boost power converters. In order to examine whether the proposed controllers can achieve stable operation, a novel stability analysis is introduced, which incorporates the advanced nonlinear concept of input-to-state stability and exploits the cascaded structure of the closed-loop system. This new methodology succeeds in proving asymptotic stability of the complete closed-loop system, under the only constraint of selecting negative feedback-loops. However, since the cascaded controller design is based on the time-scale separation assumption, a systematic tuning method is conducted for the accurate gain selection of both the inner-loop and outer-loop controllers. Finally, the theoretical analysis and the system performance are fully verified by simulation results which are further validated by experimental tests.