GPU上的时间扭曲:设计和评估

Xinhu Liu, Philipp Andelfinger
{"title":"GPU上的时间扭曲:设计和评估","authors":"Xinhu Liu, Philipp Andelfinger","doi":"10.1145/3064911.3064912","DOIUrl":null,"url":null,"abstract":"The parallel execution of discrete-event simulations on commodity GPUs has been shown to achieve high event rates. Most previous proposals have focused on conservative synchronization, which typically extracts only limited parallelism in cases of low event density in simulated time. We present the design and implementation of an optimistic fully GPU-based parallel discrete-event simulator based on the Time Warp synchronization algorithm. The optimistic simulator implementation is compared with an otherwise identical implementation using conservative synchronization. Our evaluation shows that in most cases, the increase in parallelism when using optimistic synchronization significantly outweighs the increased overhead for state keeping and rollbacks. To reduce the cost of state keeping, we show how XORWOW, the default pseudo-random number generator in CUDA, can be reversed based solely on its current state. Since the optimal configuration of multiple performance-critical simulator parameters depends on the behavior of the simulation model, these parameters are adapted dynamically based on performance measurements and heuristic optimization at runtime. We evaluate the simulator using the PHOLD benchmark model and a simplified model of peer-to-peer networks using the Kademlia protocol. On a commodity GPU, the optimistic simulator achieves event rates of up to 81.4 million events per second and a speedup of up to 3.6 compared with conservative synchronization.","PeriodicalId":341026,"journal":{"name":"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Time Warp on the GPU: Design and Assessment\",\"authors\":\"Xinhu Liu, Philipp Andelfinger\",\"doi\":\"10.1145/3064911.3064912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The parallel execution of discrete-event simulations on commodity GPUs has been shown to achieve high event rates. Most previous proposals have focused on conservative synchronization, which typically extracts only limited parallelism in cases of low event density in simulated time. We present the design and implementation of an optimistic fully GPU-based parallel discrete-event simulator based on the Time Warp synchronization algorithm. The optimistic simulator implementation is compared with an otherwise identical implementation using conservative synchronization. Our evaluation shows that in most cases, the increase in parallelism when using optimistic synchronization significantly outweighs the increased overhead for state keeping and rollbacks. To reduce the cost of state keeping, we show how XORWOW, the default pseudo-random number generator in CUDA, can be reversed based solely on its current state. Since the optimal configuration of multiple performance-critical simulator parameters depends on the behavior of the simulation model, these parameters are adapted dynamically based on performance measurements and heuristic optimization at runtime. We evaluate the simulator using the PHOLD benchmark model and a simplified model of peer-to-peer networks using the Kademlia protocol. On a commodity GPU, the optimistic simulator achieves event rates of up to 81.4 million events per second and a speedup of up to 3.6 compared with conservative synchronization.\",\"PeriodicalId\":341026,\"journal\":{\"name\":\"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3064911.3064912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3064911.3064912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在商品gpu上并行执行离散事件模拟已被证明可以实现高事件率。大多数先前的建议都集中在保守同步上,它通常只在模拟时间内低事件密度的情况下提取有限的并行性。提出了一种基于时间扭曲同步算法的全乐观型gpu并行离散事件模拟器的设计与实现。将乐观模拟器实现与使用保守同步的其他相同实现进行比较。我们的评估表明,在大多数情况下,使用乐观同步时并行性的增加大大超过了状态保持和回滚所增加的开销。为了降低状态保持的成本,我们展示了XORWOW (CUDA中的默认伪随机数生成器)如何仅基于其当前状态进行反转。由于多个性能关键型模拟器参数的最佳配置取决于仿真模型的行为,因此这些参数是基于运行时的性能测量和启发式优化动态调整的。我们使用PHOLD基准模型和使用Kademlia协议的点对点网络简化模型来评估模拟器。在商用GPU上,与保守同步相比,乐观模拟器实现了高达每秒8140万事件的事件率和高达3.6的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Warp on the GPU: Design and Assessment
The parallel execution of discrete-event simulations on commodity GPUs has been shown to achieve high event rates. Most previous proposals have focused on conservative synchronization, which typically extracts only limited parallelism in cases of low event density in simulated time. We present the design and implementation of an optimistic fully GPU-based parallel discrete-event simulator based on the Time Warp synchronization algorithm. The optimistic simulator implementation is compared with an otherwise identical implementation using conservative synchronization. Our evaluation shows that in most cases, the increase in parallelism when using optimistic synchronization significantly outweighs the increased overhead for state keeping and rollbacks. To reduce the cost of state keeping, we show how XORWOW, the default pseudo-random number generator in CUDA, can be reversed based solely on its current state. Since the optimal configuration of multiple performance-critical simulator parameters depends on the behavior of the simulation model, these parameters are adapted dynamically based on performance measurements and heuristic optimization at runtime. We evaluate the simulator using the PHOLD benchmark model and a simplified model of peer-to-peer networks using the Kademlia protocol. On a commodity GPU, the optimistic simulator achieves event rates of up to 81.4 million events per second and a speedup of up to 3.6 compared with conservative synchronization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信