面向计算机视觉任务的柔性集成支持向量机

Rémi Trichet, N. O’Connor
{"title":"面向计算机视觉任务的柔性集成支持向量机","authors":"Rémi Trichet, N. O’Connor","doi":"10.1109/AVSS.2016.7738028","DOIUrl":null,"url":null,"abstract":"This paper presents an ensemble-SVM method that features a data selection mechanism with stochastic and deterministic properties, the use of extreme value theory for classifier calibration, and the introduction of random forest for classifier combination. We applied the proposed algorithm to 2 event recognition datasets and the PASCAL2007 object detection dataset and compared it to single SVM and common computer vision ensemble-SVM methods. Our algorithm outperforms its competitors and shows a considerable boost on datasets with a limited amount of outliers.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A flexible ensemble-SVM for computer vision tasks\",\"authors\":\"Rémi Trichet, N. O’Connor\",\"doi\":\"10.1109/AVSS.2016.7738028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an ensemble-SVM method that features a data selection mechanism with stochastic and deterministic properties, the use of extreme value theory for classifier calibration, and the introduction of random forest for classifier combination. We applied the proposed algorithm to 2 event recognition datasets and the PASCAL2007 object detection dataset and compared it to single SVM and common computer vision ensemble-SVM methods. Our algorithm outperforms its competitors and shows a considerable boost on datasets with a limited amount of outliers.\",\"PeriodicalId\":438290,\"journal\":{\"name\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2016.7738028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种集成支持向量机方法,其特点是具有随机和确定性的数据选择机制,使用极值理论进行分类器校准,并引入随机森林进行分类器组合。我们将该算法应用于2个事件识别数据集和PASCAL2007目标检测数据集,并将其与单一SVM和常见的计算机视觉集成SVM方法进行了比较。我们的算法优于其竞争对手,并在具有有限异常值的数据集上显示出相当大的提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A flexible ensemble-SVM for computer vision tasks
This paper presents an ensemble-SVM method that features a data selection mechanism with stochastic and deterministic properties, the use of extreme value theory for classifier calibration, and the introduction of random forest for classifier combination. We applied the proposed algorithm to 2 event recognition datasets and the PASCAL2007 object detection dataset and compared it to single SVM and common computer vision ensemble-SVM methods. Our algorithm outperforms its competitors and shows a considerable boost on datasets with a limited amount of outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信