基于深度学习的软件漏洞检测技术综述

Züleyha İpek Alagöz, S. Akleylek
{"title":"基于深度学习的软件漏洞检测技术综述","authors":"Züleyha İpek Alagöz, S. Akleylek","doi":"10.1109/ISCTURKEY53027.2021.9654351","DOIUrl":null,"url":null,"abstract":"Software vulnerabilities (SV) cause disastrous impact on information security in recent years. Higher cost and time consumption on manual detection methods lead to enormous number of increase in automatic SV detection techniques. Machine learning, deep learning (DL) and data mining methods are the most popular and efficient ones which also have advantage on analyzing performance results with use of available open-source softwares. This survey mainly focuses on the recent SV detection systems that use deep learning techniques. In this context, papers with significant impact on the literature are investigated, and deep learning methods, data sets and performance results are analyzed. Moreover, open problems and solution proposals are discussed.","PeriodicalId":383915,"journal":{"name":"2021 International Conference on Information Security and Cryptology (ISCTURKEY)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Brief Review on Deep Learning Based Software Vulnerability Detection\",\"authors\":\"Züleyha İpek Alagöz, S. Akleylek\",\"doi\":\"10.1109/ISCTURKEY53027.2021.9654351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software vulnerabilities (SV) cause disastrous impact on information security in recent years. Higher cost and time consumption on manual detection methods lead to enormous number of increase in automatic SV detection techniques. Machine learning, deep learning (DL) and data mining methods are the most popular and efficient ones which also have advantage on analyzing performance results with use of available open-source softwares. This survey mainly focuses on the recent SV detection systems that use deep learning techniques. In this context, papers with significant impact on the literature are investigated, and deep learning methods, data sets and performance results are analyzed. Moreover, open problems and solution proposals are discussed.\",\"PeriodicalId\":383915,\"journal\":{\"name\":\"2021 International Conference on Information Security and Cryptology (ISCTURKEY)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Security and Cryptology (ISCTURKEY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCTURKEY53027.2021.9654351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Security and Cryptology (ISCTURKEY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTURKEY53027.2021.9654351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,软件漏洞给信息安全带来了灾难性的影响。人工检测方法成本和时间的增加导致自动SV检测技术的大量增加。机器学习,深度学习(DL)和数据挖掘方法是最流行和有效的方法,它们在使用可用的开源软件分析性能结果方面也具有优势。本调查主要关注最近使用深度学习技术的SV检测系统。在此背景下,研究了对文献有重大影响的论文,并对深度学习方法、数据集和性能结果进行了分析。此外,还讨论了存在的问题和解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Brief Review on Deep Learning Based Software Vulnerability Detection
Software vulnerabilities (SV) cause disastrous impact on information security in recent years. Higher cost and time consumption on manual detection methods lead to enormous number of increase in automatic SV detection techniques. Machine learning, deep learning (DL) and data mining methods are the most popular and efficient ones which also have advantage on analyzing performance results with use of available open-source softwares. This survey mainly focuses on the recent SV detection systems that use deep learning techniques. In this context, papers with significant impact on the literature are investigated, and deep learning methods, data sets and performance results are analyzed. Moreover, open problems and solution proposals are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信