Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, Charles Zhang
{"title":"精确的除零检测与肯定的证据","authors":"Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, Charles Zhang","doi":"10.1145/3510003.3510066","DOIUrl":null,"url":null,"abstract":"The static detection of divide-by-zero, a common programming error, is particularly prone to false positives because conventional static analysis reports a divide-by-zero bug whenever it cannot prove the safety property – the divisor variable is not zero in all executions. When reasoning the program semantics over a large number of under-constrained variables, conventional static analyses significantly loose the bounds of divisor variables, which easily fails the safety proof and leads to a massive number of false positives. We propose a static analysis to detect divide-by-zero bugs taking additional evidence for under-constrained variables into consideration. Based on an extensive empirical study of known divide-by-zero bugs, we no longer arbitrarily report a bug once the safety verification fails. Instead, we actively look for affirmative evidences, namely source evidence and bound evidence, that imply a high possibility of the bug to be triggerable at runtime. When applying our tool Wit to the real-world software such as the Linux kernel, we have found 72 new divide-by-zero bugs with a low false positive rate of 22%.","PeriodicalId":202896,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Precise Divide-By-Zero Detection with Affirmative Evidence\",\"authors\":\"Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, Charles Zhang\",\"doi\":\"10.1145/3510003.3510066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The static detection of divide-by-zero, a common programming error, is particularly prone to false positives because conventional static analysis reports a divide-by-zero bug whenever it cannot prove the safety property – the divisor variable is not zero in all executions. When reasoning the program semantics over a large number of under-constrained variables, conventional static analyses significantly loose the bounds of divisor variables, which easily fails the safety proof and leads to a massive number of false positives. We propose a static analysis to detect divide-by-zero bugs taking additional evidence for under-constrained variables into consideration. Based on an extensive empirical study of known divide-by-zero bugs, we no longer arbitrarily report a bug once the safety verification fails. Instead, we actively look for affirmative evidences, namely source evidence and bound evidence, that imply a high possibility of the bug to be triggerable at runtime. When applying our tool Wit to the real-world software such as the Linux kernel, we have found 72 new divide-by-zero bugs with a low false positive rate of 22%.\",\"PeriodicalId\":202896,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510003.3510066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510003.3510066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Precise Divide-By-Zero Detection with Affirmative Evidence
The static detection of divide-by-zero, a common programming error, is particularly prone to false positives because conventional static analysis reports a divide-by-zero bug whenever it cannot prove the safety property – the divisor variable is not zero in all executions. When reasoning the program semantics over a large number of under-constrained variables, conventional static analyses significantly loose the bounds of divisor variables, which easily fails the safety proof and leads to a massive number of false positives. We propose a static analysis to detect divide-by-zero bugs taking additional evidence for under-constrained variables into consideration. Based on an extensive empirical study of known divide-by-zero bugs, we no longer arbitrarily report a bug once the safety verification fails. Instead, we actively look for affirmative evidences, namely source evidence and bound evidence, that imply a high possibility of the bug to be triggerable at runtime. When applying our tool Wit to the real-world software such as the Linux kernel, we have found 72 new divide-by-zero bugs with a low false positive rate of 22%.