近似计算的可量化方法:特殊会话

Chaofan Li, Deepashree Sengupta, F. S. Snigdha, Wenbin Xu, Jiang Hu, S. Sapatnekar
{"title":"近似计算的可量化方法:特殊会话","authors":"Chaofan Li, Deepashree Sengupta, F. S. Snigdha, Wenbin Xu, Jiang Hu, S. Sapatnekar","doi":"10.1145/3125501.3125511","DOIUrl":null,"url":null,"abstract":"Approximate computing has applications in areas such as image processing, neural computation, distributed systems, and real-time systems, where the results may be acceptable in the presence of controlled levels of error. The promise of approximate computing is in its ability to render just enough performance to meet quality constraints. However, going from this theoretical promise to a practical implementation requires a clear comprehension of the system requirements and matching them to the design of approximations as the system is implemented. This involves the tasks of (a) identifying the design space of potential approximations, (b) modeling the injected error as a function of the level of approximation, and (c) optimizing the system over the design space to maximize a metric, typically the power savings, under constraints on the maximum allowable degradation. Often, the error may be introduced at a low level of design (e.g., at the level of a full adder) but its impact must be percolated up to system-level error metrics (e.g., PSNR in a compressed image), and a practical approach must devise a coherent and quantifiable way of translating between error/power tradeoffs at all levels of design.","PeriodicalId":259093,"journal":{"name":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A quantifiable approach to approximate computing: special session\",\"authors\":\"Chaofan Li, Deepashree Sengupta, F. S. Snigdha, Wenbin Xu, Jiang Hu, S. Sapatnekar\",\"doi\":\"10.1145/3125501.3125511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate computing has applications in areas such as image processing, neural computation, distributed systems, and real-time systems, where the results may be acceptable in the presence of controlled levels of error. The promise of approximate computing is in its ability to render just enough performance to meet quality constraints. However, going from this theoretical promise to a practical implementation requires a clear comprehension of the system requirements and matching them to the design of approximations as the system is implemented. This involves the tasks of (a) identifying the design space of potential approximations, (b) modeling the injected error as a function of the level of approximation, and (c) optimizing the system over the design space to maximize a metric, typically the power savings, under constraints on the maximum allowable degradation. Often, the error may be introduced at a low level of design (e.g., at the level of a full adder) but its impact must be percolated up to system-level error metrics (e.g., PSNR in a compressed image), and a practical approach must devise a coherent and quantifiable way of translating between error/power tradeoffs at all levels of design.\",\"PeriodicalId\":259093,\"journal\":{\"name\":\"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3125501.3125511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125501.3125511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近似计算在图像处理、神经计算、分布式系统和实时系统等领域都有应用,在控制误差水平的情况下,结果可能是可以接受的。近似计算的前景在于它能够提供足够的性能来满足质量限制。然而,从这个理论承诺到实际实现,需要对系统需求有清晰的理解,并在系统实现时将它们与近似设计相匹配。这涉及到以下任务:(a)识别潜在近似的设计空间,(b)将注入误差建模为近似水平的函数,以及(c)在最大允许退化的约束下,在设计空间上优化系统以最大化度量,通常是节能。通常,误差可能在较低的设计级别(例如,在全加法器级别)引入,但其影响必须渗透到系统级误差度量(例如,压缩图像中的PSNR),并且实用的方法必须设计出一种连贯且可量化的方法,在所有设计级别的误差/功率权衡之间进行转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quantifiable approach to approximate computing: special session
Approximate computing has applications in areas such as image processing, neural computation, distributed systems, and real-time systems, where the results may be acceptable in the presence of controlled levels of error. The promise of approximate computing is in its ability to render just enough performance to meet quality constraints. However, going from this theoretical promise to a practical implementation requires a clear comprehension of the system requirements and matching them to the design of approximations as the system is implemented. This involves the tasks of (a) identifying the design space of potential approximations, (b) modeling the injected error as a function of the level of approximation, and (c) optimizing the system over the design space to maximize a metric, typically the power savings, under constraints on the maximum allowable degradation. Often, the error may be introduced at a low level of design (e.g., at the level of a full adder) but its impact must be percolated up to system-level error metrics (e.g., PSNR in a compressed image), and a practical approach must devise a coherent and quantifiable way of translating between error/power tradeoffs at all levels of design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信