大期权数据的估计和过滤

Kris Jacobs, Yuguo Liu
{"title":"大期权数据的估计和过滤","authors":"Kris Jacobs, Yuguo Liu","doi":"10.2139/ssrn.3300564","DOIUrl":null,"url":null,"abstract":"The computational cost of estimating option valuation models is very high, due to model complexity and the abundance of available option data. We propose an approach that addresses these computational constraints by filtering the state variables using particle weights based on model-implied spot volatilities rather than model prices. We show that this approach is reliable. We illustrate our method by estimating the workhorse stochastic volatility and double-jump models using a big option data set. We obtain more precise estimates of variance risk premia and more plausible implied preference parameters, and we show that for these models moneyness and especially maturity restrictions may result in identification problems. The composition of the option sample affects parameter inference and the relative importance of options and returns in joint estimation.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimation and Filtering With Big Option Data\",\"authors\":\"Kris Jacobs, Yuguo Liu\",\"doi\":\"10.2139/ssrn.3300564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computational cost of estimating option valuation models is very high, due to model complexity and the abundance of available option data. We propose an approach that addresses these computational constraints by filtering the state variables using particle weights based on model-implied spot volatilities rather than model prices. We show that this approach is reliable. We illustrate our method by estimating the workhorse stochastic volatility and double-jump models using a big option data set. We obtain more precise estimates of variance risk premia and more plausible implied preference parameters, and we show that for these models moneyness and especially maturity restrictions may result in identification problems. The composition of the option sample affects parameter inference and the relative importance of options and returns in joint estimation.\",\"PeriodicalId\":299310,\"journal\":{\"name\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3300564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3300564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于模型的复杂性和可用期权数据的丰富性,估计期权估值模型的计算成本非常高。我们提出了一种方法,通过使用基于模型隐含的现货波动率而不是模型价格的粒子权重过滤状态变量来解决这些计算约束。我们证明了这种方法是可靠的。我们通过使用一个大的期权数据集估计主力马随机波动率和双跳模型来说明我们的方法。我们获得了更精确的方差风险溢价估计和更合理的隐含偏好参数,并表明对于这些模型,货币性,特别是期限限制可能导致识别问题。在联合估计中,期权样本的组成影响参数推理和期权与收益的相对重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation and Filtering With Big Option Data
The computational cost of estimating option valuation models is very high, due to model complexity and the abundance of available option data. We propose an approach that addresses these computational constraints by filtering the state variables using particle weights based on model-implied spot volatilities rather than model prices. We show that this approach is reliable. We illustrate our method by estimating the workhorse stochastic volatility and double-jump models using a big option data set. We obtain more precise estimates of variance risk premia and more plausible implied preference parameters, and we show that for these models moneyness and especially maturity restrictions may result in identification problems. The composition of the option sample affects parameter inference and the relative importance of options and returns in joint estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信