一种改进的平衡域分解递归图二分区算法

Astrid Casadei, P. Ramet, J. Roman
{"title":"一种改进的平衡域分解递归图二分区算法","authors":"Astrid Casadei, P. Ramet, J. Roman","doi":"10.1109/HiPC.2014.7116878","DOIUrl":null,"url":null,"abstract":"In the context of hybrid sparse linear solvers based on domain decomposition and Schur complement approaches, getting a domain decomposition tool leading to a good balancing of both the internal node set size and the interface node set size for all the domains is a critical point for load balancing and efficiency issues in a parallel computation context. For this purpose, we revisit the original algorithm introduced by Lipton, Rose and Tarjan [1] in 1979 which performed the recursion for nested dissection in a particular manner. From this specific recursive strategy, we propose in this paper several variations of the existing algorithms in the multilevel Scotch partitioner that take into account these multiple criteria and we illustrate the improved results on a collection of graphs corresponding to finite element meshes used in numerical scientific applications.","PeriodicalId":337777,"journal":{"name":"2014 21st International Conference on High Performance Computing (HiPC)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An improved recursive graph bipartitioning algorithm for well balanced domain decomposition\",\"authors\":\"Astrid Casadei, P. Ramet, J. Roman\",\"doi\":\"10.1109/HiPC.2014.7116878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of hybrid sparse linear solvers based on domain decomposition and Schur complement approaches, getting a domain decomposition tool leading to a good balancing of both the internal node set size and the interface node set size for all the domains is a critical point for load balancing and efficiency issues in a parallel computation context. For this purpose, we revisit the original algorithm introduced by Lipton, Rose and Tarjan [1] in 1979 which performed the recursion for nested dissection in a particular manner. From this specific recursive strategy, we propose in this paper several variations of the existing algorithms in the multilevel Scotch partitioner that take into account these multiple criteria and we illustrate the improved results on a collection of graphs corresponding to finite element meshes used in numerical scientific applications.\",\"PeriodicalId\":337777,\"journal\":{\"name\":\"2014 21st International Conference on High Performance Computing (HiPC)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21st International Conference on High Performance Computing (HiPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC.2014.7116878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st International Conference on High Performance Computing (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2014.7116878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在基于域分解和Schur互补方法的混合稀疏线性求解器中,获得一种能够很好地平衡所有域的内部节点集大小和接口节点集大小的域分解工具是并行计算环境中负载平衡和效率问题的关键。为此,我们回顾了Lipton, Rose和Tarjan[1]在1979年引入的原始算法,该算法以特定的方式对嵌套解剖进行递归。从这种特定的递归策略出发,我们在本文中提出了考虑到这些多重标准的多层Scotch分区中现有算法的几种变体,并举例说明了在数值科学应用中使用的与有限元网格对应的一组图上的改进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved recursive graph bipartitioning algorithm for well balanced domain decomposition
In the context of hybrid sparse linear solvers based on domain decomposition and Schur complement approaches, getting a domain decomposition tool leading to a good balancing of both the internal node set size and the interface node set size for all the domains is a critical point for load balancing and efficiency issues in a parallel computation context. For this purpose, we revisit the original algorithm introduced by Lipton, Rose and Tarjan [1] in 1979 which performed the recursion for nested dissection in a particular manner. From this specific recursive strategy, we propose in this paper several variations of the existing algorithms in the multilevel Scotch partitioner that take into account these multiple criteria and we illustrate the improved results on a collection of graphs corresponding to finite element meshes used in numerical scientific applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信