具有互穿网络的弹性凝胶循环加载损伤累积模型

V. Morovati, R. Dargazany
{"title":"具有互穿网络的弹性凝胶循环加载损伤累积模型","authors":"V. Morovati, R. Dargazany","doi":"10.1115/imece2019-11931","DOIUrl":null,"url":null,"abstract":"\n Double network (DN) elastomers are a class of reinforced gels that benefit from a significantly high stretch-ability and toughness. However, DN gels lose their toughness due to the accumulation of damage under cyclic loading during their lifetime. While recent advances in the process and characterization of the DN gels have led to significant improvements in their properties, our understandings of the accumulated damage mechanisms within the material remain sparse and inconclusive. Here, a physically motivated constitutive model is presented for DN gels subjected to a high number of cyclic deformations, which will eventually approach a steady-state after thousands of cycles. The model can be particularly used to elucidate the inelastic features, such as permanent damage during deformation of each cycle. The observed damage may be induced from the chain scission, chain slippage, or polymer relaxation. Therefore, irreversible chain detachment and decomposition of the first network due to its highly cross-linked structure are explored as the underlying reasons for the nonlinear stress softening phenomenon. The model is validated against the experimental tests. The model contains a few numbers of material constants and shows good agreement with cyclic uni-axial tensile test data.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling Damage Accumulation During Cyclic Loading in Elastomeric Gels With Interpenetrating Networks\",\"authors\":\"V. Morovati, R. Dargazany\",\"doi\":\"10.1115/imece2019-11931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Double network (DN) elastomers are a class of reinforced gels that benefit from a significantly high stretch-ability and toughness. However, DN gels lose their toughness due to the accumulation of damage under cyclic loading during their lifetime. While recent advances in the process and characterization of the DN gels have led to significant improvements in their properties, our understandings of the accumulated damage mechanisms within the material remain sparse and inconclusive. Here, a physically motivated constitutive model is presented for DN gels subjected to a high number of cyclic deformations, which will eventually approach a steady-state after thousands of cycles. The model can be particularly used to elucidate the inelastic features, such as permanent damage during deformation of each cycle. The observed damage may be induced from the chain scission, chain slippage, or polymer relaxation. Therefore, irreversible chain detachment and decomposition of the first network due to its highly cross-linked structure are explored as the underlying reasons for the nonlinear stress softening phenomenon. The model is validated against the experimental tests. The model contains a few numbers of material constants and shows good agreement with cyclic uni-axial tensile test data.\",\"PeriodicalId\":375383,\"journal\":{\"name\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-11931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Mechanics of Solids, Structures, and Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

双网(DN)弹性体是一类增强凝胶,具有显著的高拉伸性和韧性。然而,在其使用寿命期间,由于循环载荷下的损伤积累,DN凝胶失去了韧性。虽然最近在工艺和表征方面的进展导致了DN凝胶性能的显着改善,但我们对材料内累积损伤机制的理解仍然很少和不确定。在这里,提出了一个物理驱动的DN凝胶的本构模型,该模型受到大量的循环变形,最终将在数千次循环后接近稳态。该模型可特别用于说明非弹性特征,如在每个周期的变形过程中的永久损伤。观察到的损伤可能是由链断裂、链滑移或聚合物弛豫引起的。因此,我们探讨了第一网络由于其高度交联结构导致的不可逆链脱离和分解是非线性应力软化现象的根本原因。通过实验验证了模型的正确性。该模型包含少量材料常数,与循环单轴拉伸试验数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling Damage Accumulation During Cyclic Loading in Elastomeric Gels With Interpenetrating Networks
Double network (DN) elastomers are a class of reinforced gels that benefit from a significantly high stretch-ability and toughness. However, DN gels lose their toughness due to the accumulation of damage under cyclic loading during their lifetime. While recent advances in the process and characterization of the DN gels have led to significant improvements in their properties, our understandings of the accumulated damage mechanisms within the material remain sparse and inconclusive. Here, a physically motivated constitutive model is presented for DN gels subjected to a high number of cyclic deformations, which will eventually approach a steady-state after thousands of cycles. The model can be particularly used to elucidate the inelastic features, such as permanent damage during deformation of each cycle. The observed damage may be induced from the chain scission, chain slippage, or polymer relaxation. Therefore, irreversible chain detachment and decomposition of the first network due to its highly cross-linked structure are explored as the underlying reasons for the nonlinear stress softening phenomenon. The model is validated against the experimental tests. The model contains a few numbers of material constants and shows good agreement with cyclic uni-axial tensile test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信