基于近似离散梯度的梯度下降算法

Alessio Moreschini, Mattia Mattioni, S. Monaco, D. Normand-Cyrot
{"title":"基于近似离散梯度的梯度下降算法","authors":"Alessio Moreschini, Mattia Mattioni, S. Monaco, D. Normand-Cyrot","doi":"10.1109/ICSTCC55426.2022.9931872","DOIUrl":null,"url":null,"abstract":"We propose an optimization method obtained by the approximation of a novel discretization approach for gradient dynamics recently proposed by the authors. It is shown that the proposed algorithm ensures convergence for all amplitudes of the step size, contrarily to classical implementations.","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A gradient descent algorithm built on approximate discrete gradients\",\"authors\":\"Alessio Moreschini, Mattia Mattioni, S. Monaco, D. Normand-Cyrot\",\"doi\":\"10.1109/ICSTCC55426.2022.9931872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an optimization method obtained by the approximation of a novel discretization approach for gradient dynamics recently proposed by the authors. It is shown that the proposed algorithm ensures convergence for all amplitudes of the step size, contrarily to classical implementations.\",\"PeriodicalId\":220845,\"journal\":{\"name\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC55426.2022.9931872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种优化方法,该方法是由作者最近提出的一种新的梯度动力学离散化方法近似得到的。结果表明,与传统算法不同,该算法对所有步长幅值都具有收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A gradient descent algorithm built on approximate discrete gradients
We propose an optimization method obtained by the approximation of a novel discretization approach for gradient dynamics recently proposed by the authors. It is shown that the proposed algorithm ensures convergence for all amplitudes of the step size, contrarily to classical implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信