{"title":"高阶递归方案中的IO与OI","authors":"A. Haddad","doi":"10.4204/EPTCS.77.4","DOIUrl":null,"url":null,"abstract":"We propose a study of the modes of derivation of higher-order recursion schemes, proving that value trees obtained from schemes using innermost-outermost derivations (IO) are the same as those obtained using unrestricted derivations. Given that higher-order recursion schemes can be used as a model of functional programs, innermost-outermost derivations policy represents a theoretical view point of call by value evaluation strategy.","PeriodicalId":119563,"journal":{"name":"Fixed Points in Computer Science","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"IO vs OI in Higher-Order Recursion Schemes\",\"authors\":\"A. Haddad\",\"doi\":\"10.4204/EPTCS.77.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a study of the modes of derivation of higher-order recursion schemes, proving that value trees obtained from schemes using innermost-outermost derivations (IO) are the same as those obtained using unrestricted derivations. Given that higher-order recursion schemes can be used as a model of functional programs, innermost-outermost derivations policy represents a theoretical view point of call by value evaluation strategy.\",\"PeriodicalId\":119563,\"journal\":{\"name\":\"Fixed Points in Computer Science\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fixed Points in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.77.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed Points in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.77.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose a study of the modes of derivation of higher-order recursion schemes, proving that value trees obtained from schemes using innermost-outermost derivations (IO) are the same as those obtained using unrestricted derivations. Given that higher-order recursion schemes can be used as a model of functional programs, innermost-outermost derivations policy represents a theoretical view point of call by value evaluation strategy.