Andrej Satnik, R. Hudec, P. Kamencay, J. Hlubik, M. Benco
{"title":"立体匹配算法中关键点描述符的比较","authors":"Andrej Satnik, R. Hudec, P. Kamencay, J. Hlubik, M. Benco","doi":"10.1109/RADIOELEK.2016.7477419","DOIUrl":null,"url":null,"abstract":"In this paper, the comparison of a novel key-point image descriptors such as DAISY, BRISK, A-KAZE and LATCH with the well-known SIFT and SURF descriptors are tested and compared for the stereo matching algorithm. The main idea of this paper is to present an independent, comparative study and some of the benefits and drawbacks of these most popular image descriptors on stereo images. These descriptors are the primary input for the image correspondence algorithm (stereo matching algorithm). On this assumption, it is possible to estimate depth information from two stereo images. Two sets of experiments are conducted for relative performance evaluations. In the first part of our experiments, the accuracy of stereo matching algorithm using descriptors is demonstrated. The overall time execution is evaluated in the second set of our experiments. The all experiments have been tested on Middlebury stereo-dataset using programming language Python. The experimental result shows that the DAISY descriptor provides better results as A-KAZE or LATCH. On the other hand, DAISY descriptor is slower than SURF. The algorithm based on a DAISY descriptor is effective for matching stereo image pair and these correspondences can be used as input for 3D reconstruction.","PeriodicalId":159747,"journal":{"name":"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A comparison of key-point descriptors for the stereo matching algorithm\",\"authors\":\"Andrej Satnik, R. Hudec, P. Kamencay, J. Hlubik, M. Benco\",\"doi\":\"10.1109/RADIOELEK.2016.7477419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the comparison of a novel key-point image descriptors such as DAISY, BRISK, A-KAZE and LATCH with the well-known SIFT and SURF descriptors are tested and compared for the stereo matching algorithm. The main idea of this paper is to present an independent, comparative study and some of the benefits and drawbacks of these most popular image descriptors on stereo images. These descriptors are the primary input for the image correspondence algorithm (stereo matching algorithm). On this assumption, it is possible to estimate depth information from two stereo images. Two sets of experiments are conducted for relative performance evaluations. In the first part of our experiments, the accuracy of stereo matching algorithm using descriptors is demonstrated. The overall time execution is evaluated in the second set of our experiments. The all experiments have been tested on Middlebury stereo-dataset using programming language Python. The experimental result shows that the DAISY descriptor provides better results as A-KAZE or LATCH. On the other hand, DAISY descriptor is slower than SURF. The algorithm based on a DAISY descriptor is effective for matching stereo image pair and these correspondences can be used as input for 3D reconstruction.\",\"PeriodicalId\":159747,\"journal\":{\"name\":\"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADIOELEK.2016.7477419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2016.7477419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison of key-point descriptors for the stereo matching algorithm
In this paper, the comparison of a novel key-point image descriptors such as DAISY, BRISK, A-KAZE and LATCH with the well-known SIFT and SURF descriptors are tested and compared for the stereo matching algorithm. The main idea of this paper is to present an independent, comparative study and some of the benefits and drawbacks of these most popular image descriptors on stereo images. These descriptors are the primary input for the image correspondence algorithm (stereo matching algorithm). On this assumption, it is possible to estimate depth information from two stereo images. Two sets of experiments are conducted for relative performance evaluations. In the first part of our experiments, the accuracy of stereo matching algorithm using descriptors is demonstrated. The overall time execution is evaluated in the second set of our experiments. The all experiments have been tested on Middlebury stereo-dataset using programming language Python. The experimental result shows that the DAISY descriptor provides better results as A-KAZE or LATCH. On the other hand, DAISY descriptor is slower than SURF. The algorithm based on a DAISY descriptor is effective for matching stereo image pair and these correspondences can be used as input for 3D reconstruction.