立体匹配算法中关键点描述符的比较

Andrej Satnik, R. Hudec, P. Kamencay, J. Hlubik, M. Benco
{"title":"立体匹配算法中关键点描述符的比较","authors":"Andrej Satnik, R. Hudec, P. Kamencay, J. Hlubik, M. Benco","doi":"10.1109/RADIOELEK.2016.7477419","DOIUrl":null,"url":null,"abstract":"In this paper, the comparison of a novel key-point image descriptors such as DAISY, BRISK, A-KAZE and LATCH with the well-known SIFT and SURF descriptors are tested and compared for the stereo matching algorithm. The main idea of this paper is to present an independent, comparative study and some of the benefits and drawbacks of these most popular image descriptors on stereo images. These descriptors are the primary input for the image correspondence algorithm (stereo matching algorithm). On this assumption, it is possible to estimate depth information from two stereo images. Two sets of experiments are conducted for relative performance evaluations. In the first part of our experiments, the accuracy of stereo matching algorithm using descriptors is demonstrated. The overall time execution is evaluated in the second set of our experiments. The all experiments have been tested on Middlebury stereo-dataset using programming language Python. The experimental result shows that the DAISY descriptor provides better results as A-KAZE or LATCH. On the other hand, DAISY descriptor is slower than SURF. The algorithm based on a DAISY descriptor is effective for matching stereo image pair and these correspondences can be used as input for 3D reconstruction.","PeriodicalId":159747,"journal":{"name":"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A comparison of key-point descriptors for the stereo matching algorithm\",\"authors\":\"Andrej Satnik, R. Hudec, P. Kamencay, J. Hlubik, M. Benco\",\"doi\":\"10.1109/RADIOELEK.2016.7477419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the comparison of a novel key-point image descriptors such as DAISY, BRISK, A-KAZE and LATCH with the well-known SIFT and SURF descriptors are tested and compared for the stereo matching algorithm. The main idea of this paper is to present an independent, comparative study and some of the benefits and drawbacks of these most popular image descriptors on stereo images. These descriptors are the primary input for the image correspondence algorithm (stereo matching algorithm). On this assumption, it is possible to estimate depth information from two stereo images. Two sets of experiments are conducted for relative performance evaluations. In the first part of our experiments, the accuracy of stereo matching algorithm using descriptors is demonstrated. The overall time execution is evaluated in the second set of our experiments. The all experiments have been tested on Middlebury stereo-dataset using programming language Python. The experimental result shows that the DAISY descriptor provides better results as A-KAZE or LATCH. On the other hand, DAISY descriptor is slower than SURF. The algorithm based on a DAISY descriptor is effective for matching stereo image pair and these correspondences can be used as input for 3D reconstruction.\",\"PeriodicalId\":159747,\"journal\":{\"name\":\"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADIOELEK.2016.7477419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2016.7477419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文将DAISY、BRISK、a - kaze和LATCH等新的关键点图像描述符与SIFT和SURF描述符进行了立体匹配算法的测试和比较。本文的主要思想是提出一个独立的,比较研究和这些最流行的图像描述符对立体图像的一些优点和缺点。这些描述符是图像对应算法(立体匹配算法)的主要输入。在此假设下,可以从两幅立体图像中估计深度信息。进行了两组实验,进行了相对的性能评价。在实验的第一部分,我们证明了使用描述子的立体匹配算法的准确性。在第二组实验中评估了总体执行时间。所有的实验都在米德尔伯里立体数据集上使用编程语言Python进行了测试。实验结果表明,DAISY描述符作为A-KAZE或LATCH具有更好的效果。另一方面,DAISY描述符比SURF慢。基于DAISY描述符的算法可以有效地匹配立体图像对,这些对应关系可以作为三维重建的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of key-point descriptors for the stereo matching algorithm
In this paper, the comparison of a novel key-point image descriptors such as DAISY, BRISK, A-KAZE and LATCH with the well-known SIFT and SURF descriptors are tested and compared for the stereo matching algorithm. The main idea of this paper is to present an independent, comparative study and some of the benefits and drawbacks of these most popular image descriptors on stereo images. These descriptors are the primary input for the image correspondence algorithm (stereo matching algorithm). On this assumption, it is possible to estimate depth information from two stereo images. Two sets of experiments are conducted for relative performance evaluations. In the first part of our experiments, the accuracy of stereo matching algorithm using descriptors is demonstrated. The overall time execution is evaluated in the second set of our experiments. The all experiments have been tested on Middlebury stereo-dataset using programming language Python. The experimental result shows that the DAISY descriptor provides better results as A-KAZE or LATCH. On the other hand, DAISY descriptor is slower than SURF. The algorithm based on a DAISY descriptor is effective for matching stereo image pair and these correspondences can be used as input for 3D reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信