宫颈细胞核校正与检测的多目标方法

Paulo H. C. Oliveira, G. Moreira, D. Sabino, C. Carneiro, F. Medeiros, Flávio H. D. Araújo, Romuere R. V. Silva, A. G. Bianchi
{"title":"宫颈细胞核校正与检测的多目标方法","authors":"Paulo H. C. Oliveira, G. Moreira, D. Sabino, C. Carneiro, F. Medeiros, Flávio H. D. Araújo, Romuere R. V. Silva, A. G. Bianchi","doi":"10.1109/CEC.2017.7969586","DOIUrl":null,"url":null,"abstract":"The automation process of Pap smear analysis holds the potential to address women's health care in the face of an increasing population and respective collected data. A fundamental step for automating analysis is cell detection from light microscopy images. Such information serves as input to cell classification algorithms and diagnostic recommendation tools. This paper describes an approach to nuclei cell segmentation, which critically impacts the following steps for cell analyses. We developed an algorithm combining clustering and genetic algorithms to detect image regions with high diagnostic value. A major problem when performing the segmentation of images is the cellular overlay. We introduce a new nuclear targeting approach using heuristics associated with a multi-objective genetic algorithm. Our experiments show results using a public 45-image dataset, including comparison to other cell detection approaches. The findings suggest an improvement in the nuclei segmentation and promise to support more sophisticated schemes for data quality control.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A multi-objective approach for calibration and detection of cervical cells nuclei\",\"authors\":\"Paulo H. C. Oliveira, G. Moreira, D. Sabino, C. Carneiro, F. Medeiros, Flávio H. D. Araújo, Romuere R. V. Silva, A. G. Bianchi\",\"doi\":\"10.1109/CEC.2017.7969586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automation process of Pap smear analysis holds the potential to address women's health care in the face of an increasing population and respective collected data. A fundamental step for automating analysis is cell detection from light microscopy images. Such information serves as input to cell classification algorithms and diagnostic recommendation tools. This paper describes an approach to nuclei cell segmentation, which critically impacts the following steps for cell analyses. We developed an algorithm combining clustering and genetic algorithms to detect image regions with high diagnostic value. A major problem when performing the segmentation of images is the cellular overlay. We introduce a new nuclear targeting approach using heuristics associated with a multi-objective genetic algorithm. Our experiments show results using a public 45-image dataset, including comparison to other cell detection approaches. The findings suggest an improvement in the nuclei segmentation and promise to support more sophisticated schemes for data quality control.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

巴氏涂片分析的自动化过程有可能在面对不断增长的人口和各自收集的数据时解决妇女保健问题。自动化分析的一个基本步骤是从光学显微镜图像中检测细胞。这些信息作为细胞分类算法和诊断推荐工具的输入。本文描述了一种核细胞分割的方法,它对细胞分析的后续步骤有重要影响。我们开发了一种结合聚类和遗传算法的算法来检测具有高诊断价值的图像区域。在进行图像分割时的一个主要问题是细胞覆盖。我们介绍了一种新的核靶向方法,使用启发式与多目标遗传算法相关联。我们的实验显示了使用公共45张图像数据集的结果,包括与其他细胞检测方法的比较。研究结果表明,核分割的改进,并承诺支持更复杂的方案的数据质量控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-objective approach for calibration and detection of cervical cells nuclei
The automation process of Pap smear analysis holds the potential to address women's health care in the face of an increasing population and respective collected data. A fundamental step for automating analysis is cell detection from light microscopy images. Such information serves as input to cell classification algorithms and diagnostic recommendation tools. This paper describes an approach to nuclei cell segmentation, which critically impacts the following steps for cell analyses. We developed an algorithm combining clustering and genetic algorithms to detect image regions with high diagnostic value. A major problem when performing the segmentation of images is the cellular overlay. We introduce a new nuclear targeting approach using heuristics associated with a multi-objective genetic algorithm. Our experiments show results using a public 45-image dataset, including comparison to other cell detection approaches. The findings suggest an improvement in the nuclei segmentation and promise to support more sophisticated schemes for data quality control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信