Web应用侦察扫描检测采用基于LSTM网络的深度学习

Bronjon Gogoi, Rahul Deka, Suchitra Pyarelal
{"title":"Web应用侦察扫描检测采用基于LSTM网络的深度学习","authors":"Bronjon Gogoi, Rahul Deka, Suchitra Pyarelal","doi":"10.1109/ICAITPR51569.2022.9844219","DOIUrl":null,"url":null,"abstract":"Web applications are frequent targets of attack due to their widespread use and round the clock availability. Malicious users can exploit vulnerabilities in web applications to steal sensitive information, modify and destroy data as well as deface web applications. The process of exploiting web applications is a multi-step process and the first step in an attack is reconnaissance, in which the attacker tries to gather information about the target web application. In this step, the attacker uses highly efficient automated scanning tools to scan web applications. Following reconnaissance, the attacker proceeds to vulnerability scanning and subsequently attempts to exploit the vulnerabilities discovered to compromise the web application. Detection of reconnaissance scans by malicious users can be combined with other traditional intrusion detection and prevention systems to improve the security of web applications. In this paper, a method for detecting reconnaissance scans through analysis of web server access logs is proposed. The proposed approach uses an LSTM network based deep learning approach for detecting reconnaissance scans. Experiments conducted show that the proposed approach achieves a mean precision, recall and f1-score of 0.99 over three data sets and precision, recall and f1-score of 0.97, 0.96 and 0.96 over the combined dataset.","PeriodicalId":262409,"journal":{"name":"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Web application reconnaissance scan detection using LSTM network based deep learning\",\"authors\":\"Bronjon Gogoi, Rahul Deka, Suchitra Pyarelal\",\"doi\":\"10.1109/ICAITPR51569.2022.9844219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web applications are frequent targets of attack due to their widespread use and round the clock availability. Malicious users can exploit vulnerabilities in web applications to steal sensitive information, modify and destroy data as well as deface web applications. The process of exploiting web applications is a multi-step process and the first step in an attack is reconnaissance, in which the attacker tries to gather information about the target web application. In this step, the attacker uses highly efficient automated scanning tools to scan web applications. Following reconnaissance, the attacker proceeds to vulnerability scanning and subsequently attempts to exploit the vulnerabilities discovered to compromise the web application. Detection of reconnaissance scans by malicious users can be combined with other traditional intrusion detection and prevention systems to improve the security of web applications. In this paper, a method for detecting reconnaissance scans through analysis of web server access logs is proposed. The proposed approach uses an LSTM network based deep learning approach for detecting reconnaissance scans. Experiments conducted show that the proposed approach achieves a mean precision, recall and f1-score of 0.99 over three data sets and precision, recall and f1-score of 0.97, 0.96 and 0.96 over the combined dataset.\",\"PeriodicalId\":262409,\"journal\":{\"name\":\"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAITPR51569.2022.9844219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAITPR51569.2022.9844219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于Web应用程序的广泛使用和全天候可用性,它们经常成为攻击的目标。恶意用户可以利用web应用程序中的漏洞窃取敏感信息,修改和破坏数据以及破坏web应用程序。利用web应用程序的过程是一个多步骤的过程,攻击的第一步是侦察,攻击者试图收集有关目标web应用程序的信息。在此步骤中,攻击者使用高效的自动扫描工具扫描web应用程序。在侦察之后,攻击者进行漏洞扫描,然后试图利用发现的漏洞来破坏web应用程序。检测恶意用户的侦察扫描可以与其他传统的入侵检测和防御系统相结合,提高web应用程序的安全性。本文提出了一种通过分析web服务器访问日志来检测侦察扫描的方法。该方法使用基于LSTM网络的深度学习方法来检测侦察扫描。实验结果表明,该方法在三个数据集上的平均查准率、查全率和f1-score均为0.99,在组合数据集上的平均查准率、查全率和f1-score分别为0.97、0.96和0.96。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web application reconnaissance scan detection using LSTM network based deep learning
Web applications are frequent targets of attack due to their widespread use and round the clock availability. Malicious users can exploit vulnerabilities in web applications to steal sensitive information, modify and destroy data as well as deface web applications. The process of exploiting web applications is a multi-step process and the first step in an attack is reconnaissance, in which the attacker tries to gather information about the target web application. In this step, the attacker uses highly efficient automated scanning tools to scan web applications. Following reconnaissance, the attacker proceeds to vulnerability scanning and subsequently attempts to exploit the vulnerabilities discovered to compromise the web application. Detection of reconnaissance scans by malicious users can be combined with other traditional intrusion detection and prevention systems to improve the security of web applications. In this paper, a method for detecting reconnaissance scans through analysis of web server access logs is proposed. The proposed approach uses an LSTM network based deep learning approach for detecting reconnaissance scans. Experiments conducted show that the proposed approach achieves a mean precision, recall and f1-score of 0.99 over three data sets and precision, recall and f1-score of 0.97, 0.96 and 0.96 over the combined dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信