SAR层析成像高度重建的深度学习解决方案

Wenyu Yang, A. Budillon, G. Ferraioli, V. Pascazio, Gilda Schirinzi, S. Vitale
{"title":"SAR层析成像高度重建的深度学习解决方案","authors":"Wenyu Yang, A. Budillon, G. Ferraioli, V. Pascazio, Gilda Schirinzi, S. Vitale","doi":"10.1109/IGARSS46834.2022.9883582","DOIUrl":null,"url":null,"abstract":"Elevation estimation of canopy and ground is one of the main aims in dealing with forest scenario using Synthetic Aperture Radar (SAR) Tomography. Theoretically, SAR Tomography (TomoSAR) provides layover solution, allowing to reconstruct the elevation of the different contributions collapsing in the same resolution cell. TomoSAR is commonly applied on both urban and vegetated areas. Within the latter scenario, one of the most interesting outcomes of TomoSAR is the possibility of separating the canopy and ground, allowing the reconstruction of their height maps. Within this paper, we propose a Deep Learning (DL) based method for TomoSAR. In particular, a neural network was trained for predicting the elevation value of canopy and ground of an area under investigation, based on a stack of SAR fully polarimetric multi-baseline acquisitions. The method uses the Light Detection And Ranging (LiDAR) data as reference and exploit a classification approach. The process was operated on a tropical forest over the TropiSAR2009 test site in Paracou, French Guiana. Testing results on real data are presented showing interesting results.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Deep Learning Solution for Height Reconstruction in SAR Tomography\",\"authors\":\"Wenyu Yang, A. Budillon, G. Ferraioli, V. Pascazio, Gilda Schirinzi, S. Vitale\",\"doi\":\"10.1109/IGARSS46834.2022.9883582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elevation estimation of canopy and ground is one of the main aims in dealing with forest scenario using Synthetic Aperture Radar (SAR) Tomography. Theoretically, SAR Tomography (TomoSAR) provides layover solution, allowing to reconstruct the elevation of the different contributions collapsing in the same resolution cell. TomoSAR is commonly applied on both urban and vegetated areas. Within the latter scenario, one of the most interesting outcomes of TomoSAR is the possibility of separating the canopy and ground, allowing the reconstruction of their height maps. Within this paper, we propose a Deep Learning (DL) based method for TomoSAR. In particular, a neural network was trained for predicting the elevation value of canopy and ground of an area under investigation, based on a stack of SAR fully polarimetric multi-baseline acquisitions. The method uses the Light Detection And Ranging (LiDAR) data as reference and exploit a classification approach. The process was operated on a tropical forest over the TropiSAR2009 test site in Paracou, French Guiana. Testing results on real data are presented showing interesting results.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9883582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

合成孔径雷达(SAR)层析成像处理森林情景的主要目的之一是估算冠层和地面的高程。理论上,SAR层析成像(TomoSAR)提供了中途停留解决方案,允许在相同分辨率单元中重建不同贡献的高程。TomoSAR通常应用于城市和植被地区。在后一种情况下,TomoSAR最有趣的结果之一是分离树冠和地面的可能性,从而可以重建它们的高度图。在本文中,我们提出了一种基于深度学习的TomoSAR方法。特别是,基于一叠SAR全偏振多基线采集数据,训练神经网络来预测调查区域的冠层和地面高程值。该方法以光探测和测距(LiDAR)数据为参考,采用一种分类方法。该过程是在法属圭亚那帕拉库的TropiSAR2009试验场上空的热带森林中进行的。给出了在实际数据上的测试结果,结果令人感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Solution for Height Reconstruction in SAR Tomography
Elevation estimation of canopy and ground is one of the main aims in dealing with forest scenario using Synthetic Aperture Radar (SAR) Tomography. Theoretically, SAR Tomography (TomoSAR) provides layover solution, allowing to reconstruct the elevation of the different contributions collapsing in the same resolution cell. TomoSAR is commonly applied on both urban and vegetated areas. Within the latter scenario, one of the most interesting outcomes of TomoSAR is the possibility of separating the canopy and ground, allowing the reconstruction of their height maps. Within this paper, we propose a Deep Learning (DL) based method for TomoSAR. In particular, a neural network was trained for predicting the elevation value of canopy and ground of an area under investigation, based on a stack of SAR fully polarimetric multi-baseline acquisitions. The method uses the Light Detection And Ranging (LiDAR) data as reference and exploit a classification approach. The process was operated on a tropical forest over the TropiSAR2009 test site in Paracou, French Guiana. Testing results on real data are presented showing interesting results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信