双线性方程与模糊图像比较

F. D. Martino, S. Sessa
{"title":"双线性方程与模糊图像比较","authors":"F. D. Martino, S. Sessa","doi":"10.1109/FUZZ-IEEE.2017.8015397","DOIUrl":null,"url":null,"abstract":"We present an image comparison method based on the greatest solution of a system of bilinear fuzzy relation equations A·x=B·x, where “·” is the max-min composition, A and B are the compared images, normalized in [0,1] and considered as fuzzy relations, and x is an unknown vector. Due to symmetry, A (resp. B) could be the original image and B (resp. A) is an image modified of A (resp. B) (for instance, either noised or watermarked). Our index is more robust than other two comparison indexes already known in literature.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilinear equations and fuzzy image comparison\",\"authors\":\"F. D. Martino, S. Sessa\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an image comparison method based on the greatest solution of a system of bilinear fuzzy relation equations A·x=B·x, where “·” is the max-min composition, A and B are the compared images, normalized in [0,1] and considered as fuzzy relations, and x is an unknown vector. Due to symmetry, A (resp. B) could be the original image and B (resp. A) is an image modified of A (resp. B) (for instance, either noised or watermarked). Our index is more robust than other two comparison indexes already known in literature.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于双线性模糊关系方程a·x=B·x系统的最大解的图像比较方法,其中“·”为最大-最小组合,a和B为比较图像,在[0,1]中归一化并视为模糊关系,x为未知向量。由于对称,A (p。B)可以是原始图像,B (resp。A)是A (resp.)的修改后的图像。B)(例如,噪声或水印)。我们的指标比文献中已知的其他两个比较指标更稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bilinear equations and fuzzy image comparison
We present an image comparison method based on the greatest solution of a system of bilinear fuzzy relation equations A·x=B·x, where “·” is the max-min composition, A and B are the compared images, normalized in [0,1] and considered as fuzzy relations, and x is an unknown vector. Due to symmetry, A (resp. B) could be the original image and B (resp. A) is an image modified of A (resp. B) (for instance, either noised or watermarked). Our index is more robust than other two comparison indexes already known in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信