{"title":"检验统计假设","authors":"E. Lehmann","doi":"10.2307/2308693","DOIUrl":null,"url":null,"abstract":"The General Decision Problem.- The Probability Background.- Uniformly Most Powerful Tests.- Unbiasedness: Theory and First Applications.- Unbiasedness: Applications to Normal Distributions.- Invariance.- Linear Hypotheses.- The Minimax Principle.- Multiple Testing and Simultaneous Inference.- Conditional Inference.- Basic Large Sample Theory.- Quadratic Mean Differentiable Families.- Large Sample Optimality.- Testing Goodness of Fit.- General Large Sample Methods.","PeriodicalId":297640,"journal":{"name":"Springer Texts in Statistics","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1960-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":"{\"title\":\"Testing Statistical Hypotheses\",\"authors\":\"E. Lehmann\",\"doi\":\"10.2307/2308693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The General Decision Problem.- The Probability Background.- Uniformly Most Powerful Tests.- Unbiasedness: Theory and First Applications.- Unbiasedness: Applications to Normal Distributions.- Invariance.- Linear Hypotheses.- The Minimax Principle.- Multiple Testing and Simultaneous Inference.- Conditional Inference.- Basic Large Sample Theory.- Quadratic Mean Differentiable Families.- Large Sample Optimality.- Testing Goodness of Fit.- General Large Sample Methods.\",\"PeriodicalId\":297640,\"journal\":{\"name\":\"Springer Texts in Statistics\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1960-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"176\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Springer Texts in Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/2308693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Springer Texts in Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/2308693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The General Decision Problem.- The Probability Background.- Uniformly Most Powerful Tests.- Unbiasedness: Theory and First Applications.- Unbiasedness: Applications to Normal Distributions.- Invariance.- Linear Hypotheses.- The Minimax Principle.- Multiple Testing and Simultaneous Inference.- Conditional Inference.- Basic Large Sample Theory.- Quadratic Mean Differentiable Families.- Large Sample Optimality.- Testing Goodness of Fit.- General Large Sample Methods.