跳跃性眼球运动的高斯混合模型

Alberto López, F. Ferrero, S. Qaisar, O. Postolache
{"title":"跳跃性眼球运动的高斯混合模型","authors":"Alberto López, F. Ferrero, S. Qaisar, O. Postolache","doi":"10.1109/MeMeA54994.2022.9856404","DOIUrl":null,"url":null,"abstract":"This paper reports a study conducted to model saccadic eye movements based on a combination of Gaussian basis functions. Eye movement signal was recorded employing the electrooculography technique using a commercial bio amplifier that records the electrical activity of the eyes through surface electrodes. The Gaussian Mixture Model algorithm was employed for this purpose and implemented using MATLAB software. Modeling these eye movements is essential for feature extraction, processing, compression, transmission, and prediction applications. The proposed technique succeeded in modeling saccade based on root mean squared error, mean absolute error, mean percentage absolute error, and coefficient of determination, $\\mathrm{R}^{2}$, parameters employing 10 Gaussian basis components.","PeriodicalId":106228,"journal":{"name":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian Mixture Model of Saccadic Eye Movements\",\"authors\":\"Alberto López, F. Ferrero, S. Qaisar, O. Postolache\",\"doi\":\"10.1109/MeMeA54994.2022.9856404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a study conducted to model saccadic eye movements based on a combination of Gaussian basis functions. Eye movement signal was recorded employing the electrooculography technique using a commercial bio amplifier that records the electrical activity of the eyes through surface electrodes. The Gaussian Mixture Model algorithm was employed for this purpose and implemented using MATLAB software. Modeling these eye movements is essential for feature extraction, processing, compression, transmission, and prediction applications. The proposed technique succeeded in modeling saccade based on root mean squared error, mean absolute error, mean percentage absolute error, and coefficient of determination, $\\\\mathrm{R}^{2}$, parameters employing 10 Gaussian basis components.\",\"PeriodicalId\":106228,\"journal\":{\"name\":\"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA54994.2022.9856404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA54994.2022.9856404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一项基于高斯基函数的组合来模拟跳眼运动的研究。眼动信号的记录采用眼电记录技术,使用商用生物放大器,通过表面电极记录眼睛的电活动。为此采用高斯混合模型算法,并利用MATLAB软件实现。对这些眼球运动进行建模对于特征提取、处理、压缩、传输和预测应用至关重要。该方法基于均方根误差、平均绝对误差、平均绝对误差百分比和确定系数$\ mathm {R}^{2}$等参数,采用10个高斯基分量,成功地对眼动进行了建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Mixture Model of Saccadic Eye Movements
This paper reports a study conducted to model saccadic eye movements based on a combination of Gaussian basis functions. Eye movement signal was recorded employing the electrooculography technique using a commercial bio amplifier that records the electrical activity of the eyes through surface electrodes. The Gaussian Mixture Model algorithm was employed for this purpose and implemented using MATLAB software. Modeling these eye movements is essential for feature extraction, processing, compression, transmission, and prediction applications. The proposed technique succeeded in modeling saccade based on root mean squared error, mean absolute error, mean percentage absolute error, and coefficient of determination, $\mathrm{R}^{2}$, parameters employing 10 Gaussian basis components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信