使用Snomed识别和索引化学和药物提及。

Pilar López Úbeda, Manuel Carlos Díaz Galiano, L. Ureña López, Maite Martin
{"title":"使用Snomed识别和索引化学和药物提及。","authors":"Pilar López Úbeda, Manuel Carlos Díaz Galiano, L. Ureña López, Maite Martin","doi":"10.18653/v1/D19-5718","DOIUrl":null,"url":null,"abstract":"In this paper we describe a new named entity extraction system. Our work proposes a system for the identification and annotation of drug names in Spanish biomedical texts based on machine learning and deep learning models. Subsequently, a standardized code using Snomed is assigned to these drugs, for this purpose, Natural Language Processing tools and techniques have been used, and a dictionary of different sources of information has been built. The results are promising, we obtain 78% in F1 score on the first sub-track and in the second task we map with Snomed correctly 72% of the found entities.","PeriodicalId":338917,"journal":{"name":"Proceedings of The 5th Workshop on BioNLP Open Shared Tasks","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Snomed to recognize and index chemical and drug mentions.\",\"authors\":\"Pilar López Úbeda, Manuel Carlos Díaz Galiano, L. Ureña López, Maite Martin\",\"doi\":\"10.18653/v1/D19-5718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a new named entity extraction system. Our work proposes a system for the identification and annotation of drug names in Spanish biomedical texts based on machine learning and deep learning models. Subsequently, a standardized code using Snomed is assigned to these drugs, for this purpose, Natural Language Processing tools and techniques have been used, and a dictionary of different sources of information has been built. The results are promising, we obtain 78% in F1 score on the first sub-track and in the second task we map with Snomed correctly 72% of the found entities.\",\"PeriodicalId\":338917,\"journal\":{\"name\":\"Proceedings of The 5th Workshop on BioNLP Open Shared Tasks\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 5th Workshop on BioNLP Open Shared Tasks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/D19-5718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 5th Workshop on BioNLP Open Shared Tasks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-5718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种新的命名实体抽取系统。我们的工作提出了一个基于机器学习和深度学习模型的西班牙生物医学文本中药物名称识别和注释系统。随后,使用Snomed为这些药物分配了标准化代码,为此,使用了自然语言处理工具和技术,并建立了不同信息来源的字典。结果是有希望的,我们在第一个子轨道上获得了78%的F1分数,在第二个任务中,我们正确地映射了72%的发现实体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Snomed to recognize and index chemical and drug mentions.
In this paper we describe a new named entity extraction system. Our work proposes a system for the identification and annotation of drug names in Spanish biomedical texts based on machine learning and deep learning models. Subsequently, a standardized code using Snomed is assigned to these drugs, for this purpose, Natural Language Processing tools and techniques have been used, and a dictionary of different sources of information has been built. The results are promising, we obtain 78% in F1 score on the first sub-track and in the second task we map with Snomed correctly 72% of the found entities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信