贝叶斯图像重建:在发射中的应用

R. Noumeir, G. Mailloux, R. Lemieux
{"title":"贝叶斯图像重建:在发射中的应用","authors":"R. Noumeir, G. Mailloux, R. Lemieux","doi":"10.1109/SSAP.1994.572528","DOIUrl":null,"url":null,"abstract":"A bayesian image reconstruction algorithm is proposed for emission tomography. It incorporates the Poisson nature of the noise in the projection data and characterizes the image to be reconstructed by an homogeneous Gauss-Markov process that can be represented by an autoregressive model. The modelling error is assumed to be a zero mean whitenoise process. The expectation maximization method is applied to find the maximum a posteriori (MAP) estimator. Comparisons between the maximum likelihood (ML) algorithm and the MAP algorithm are carried out with a numerical phantom. The porposed algorithm succeeds in overcoming the noise artefact inherent to ML and gives results superior to the best results reached by ML.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":"9 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Image Reconstruction: An Application to Emission\",\"authors\":\"R. Noumeir, G. Mailloux, R. Lemieux\",\"doi\":\"10.1109/SSAP.1994.572528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bayesian image reconstruction algorithm is proposed for emission tomography. It incorporates the Poisson nature of the noise in the projection data and characterizes the image to be reconstructed by an homogeneous Gauss-Markov process that can be represented by an autoregressive model. The modelling error is assumed to be a zero mean whitenoise process. The expectation maximization method is applied to find the maximum a posteriori (MAP) estimator. Comparisons between the maximum likelihood (ML) algorithm and the MAP algorithm are carried out with a numerical phantom. The porposed algorithm succeeds in overcoming the noise artefact inherent to ML and gives results superior to the best results reached by ML.\",\"PeriodicalId\":151571,\"journal\":{\"name\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"volume\":\"9 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1994.572528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于发射层析成像的贝叶斯图像重建算法。它结合了投影数据中噪声的泊松性质,并表征了通过齐次高斯-马尔可夫过程重构的图像,该过程可以用自回归模型表示。假设建模误差为零平均白噪声过程。应用期望最大化方法寻找最大后验估计量。通过数值模拟对最大似然(ML)算法和MAP算法进行了比较。该算法成功地克服了机器学习固有的噪声伪影,得到的结果优于机器学习的最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Image Reconstruction: An Application to Emission
A bayesian image reconstruction algorithm is proposed for emission tomography. It incorporates the Poisson nature of the noise in the projection data and characterizes the image to be reconstructed by an homogeneous Gauss-Markov process that can be represented by an autoregressive model. The modelling error is assumed to be a zero mean whitenoise process. The expectation maximization method is applied to find the maximum a posteriori (MAP) estimator. Comparisons between the maximum likelihood (ML) algorithm and the MAP algorithm are carried out with a numerical phantom. The porposed algorithm succeeds in overcoming the noise artefact inherent to ML and gives results superior to the best results reached by ML.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信