纳什均衡是一个函数的最小值。应用于参与者众多的电力市场

E.V. Beck, R. Cherkaoui, A. Minoia, D. Ernst
{"title":"纳什均衡是一个函数的最小值。应用于参与者众多的电力市场","authors":"E.V. Beck, R. Cherkaoui, A. Minoia, D. Ernst","doi":"10.1109/PCT.2007.4538424","DOIUrl":null,"url":null,"abstract":"We introduce in this paper a new approach for efficiently identifying Nash equilibria for games composed of large numbers of players having discrete and not too large strategy spaces. The approach is based on a characterization of Nash equilibria in terms of minima of a function and relies on stochastic optimization algorithms to find these minima. The approach is applied to compute Nash equilibria of some electricity markets and, based on the simulation results, its performances are discussed.","PeriodicalId":356805,"journal":{"name":"2007 IEEE Lausanne Power Tech","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Nash equilibrium as the minimum of a function. Application to electricity markets with large number of actors\",\"authors\":\"E.V. Beck, R. Cherkaoui, A. Minoia, D. Ernst\",\"doi\":\"10.1109/PCT.2007.4538424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce in this paper a new approach for efficiently identifying Nash equilibria for games composed of large numbers of players having discrete and not too large strategy spaces. The approach is based on a characterization of Nash equilibria in terms of minima of a function and relies on stochastic optimization algorithms to find these minima. The approach is applied to compute Nash equilibria of some electricity markets and, based on the simulation results, its performances are discussed.\",\"PeriodicalId\":356805,\"journal\":{\"name\":\"2007 IEEE Lausanne Power Tech\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Lausanne Power Tech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCT.2007.4538424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Lausanne Power Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCT.2007.4538424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了一种新的方法,用于有效识别具有离散且不太大策略空间的大量参与者组成的博弈的纳什均衡。该方法是基于纳什均衡在函数的最小值方面的特征,并依赖于随机优化算法来找到这些最小值。将该方法应用于某些电力市场的纳什均衡计算,并根据仿真结果讨论了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nash equilibrium as the minimum of a function. Application to electricity markets with large number of actors
We introduce in this paper a new approach for efficiently identifying Nash equilibria for games composed of large numbers of players having discrete and not too large strategy spaces. The approach is based on a characterization of Nash equilibria in terms of minima of a function and relies on stochastic optimization algorithms to find these minima. The approach is applied to compute Nash equilibria of some electricity markets and, based on the simulation results, its performances are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信