结合深度和手工图像特征在无人机图像中的车辆分类

Xuesong Le, Yufei Wang, Jun Jo
{"title":"结合深度和手工图像特征在无人机图像中的车辆分类","authors":"Xuesong Le, Yufei Wang, Jun Jo","doi":"10.1109/DICTA.2018.8615853","DOIUrl":null,"url":null,"abstract":"Using unmanned aerial vehicles (UAVs) as devices for traffic data collection exhibits many advantages in collecting traffic information. This paper presents an efficient method based on the deep learning and handcrafted features to classify vehicles taken from drone imagery. Experimental results show that compared to classification algorithms based on pre-trained CNN or hand-crafted features, the proposed algorithm exhibits higher accuracy in vehicle recognition at different UAV altitudes with different view scopes, which can be used in future traffic monitoring and control in metropolitan areas.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"21 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combining Deep and Handcrafted Image Features for Vehicle Classification in Drone Imagery\",\"authors\":\"Xuesong Le, Yufei Wang, Jun Jo\",\"doi\":\"10.1109/DICTA.2018.8615853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using unmanned aerial vehicles (UAVs) as devices for traffic data collection exhibits many advantages in collecting traffic information. This paper presents an efficient method based on the deep learning and handcrafted features to classify vehicles taken from drone imagery. Experimental results show that compared to classification algorithms based on pre-trained CNN or hand-crafted features, the proposed algorithm exhibits higher accuracy in vehicle recognition at different UAV altitudes with different view scopes, which can be used in future traffic monitoring and control in metropolitan areas.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"21 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

使用无人机作为交通数据采集设备,在交通信息采集方面具有许多优势。本文提出了一种基于深度学习和手工特征的无人机图像车辆分类方法。实验结果表明,与基于预训练CNN或手工特征的分类算法相比,本文算法在不同无人机高度、不同视场范围下的车辆识别精度更高,可用于未来城市交通监控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Deep and Handcrafted Image Features for Vehicle Classification in Drone Imagery
Using unmanned aerial vehicles (UAVs) as devices for traffic data collection exhibits many advantages in collecting traffic information. This paper presents an efficient method based on the deep learning and handcrafted features to classify vehicles taken from drone imagery. Experimental results show that compared to classification algorithms based on pre-trained CNN or hand-crafted features, the proposed algorithm exhibits higher accuracy in vehicle recognition at different UAV altitudes with different view scopes, which can be used in future traffic monitoring and control in metropolitan areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信