基于Kida最优逼近理论的两自变量变系数线性偏微分方程的数值解

Y. Kida, T. Kida
{"title":"基于Kida最优逼近理论的两自变量变系数线性偏微分方程的数值解","authors":"Y. Kida, T. Kida","doi":"10.1109/ISITA.2008.4895659","DOIUrl":null,"url":null,"abstract":"We derive a method of obtaining approximate numerical solution of linear variable-coefficient partial differential equations (PDEs) with two independent variables from Kida's optimum approximation theory. It is shown that a certain generalized filter bank implements linear PDEs. By applying generalized discrete orthogonality of Kida's optimum approximation to this filter bank, we prove that our approximate solution satisfies a given linear PDEs and the corresponding initial or boundary conditions at all given sample points, simultaneously.","PeriodicalId":338675,"journal":{"name":"2008 International Symposium on Information Theory and Its Applications","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical solution of linear variable-coefficient partial differential equations with two independent variables based on Kida's optimum approximation theory\",\"authors\":\"Y. Kida, T. Kida\",\"doi\":\"10.1109/ISITA.2008.4895659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a method of obtaining approximate numerical solution of linear variable-coefficient partial differential equations (PDEs) with two independent variables from Kida's optimum approximation theory. It is shown that a certain generalized filter bank implements linear PDEs. By applying generalized discrete orthogonality of Kida's optimum approximation to this filter bank, we prove that our approximate solution satisfies a given linear PDEs and the corresponding initial or boundary conditions at all given sample points, simultaneously.\",\"PeriodicalId\":338675,\"journal\":{\"name\":\"2008 International Symposium on Information Theory and Its Applications\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Information Theory and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITA.2008.4895659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Information Theory and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITA.2008.4895659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从Kida的最优逼近理论出发,导出了两自变量线性变系数偏微分方程近似数值解的一种方法。证明了一种广义滤波器组可以实现线性偏微分方程。通过将Kida最优逼近的广义离散正交性应用于该滤波器组,我们证明了我们的近似解同时满足给定的线性偏微分方程和相应的初始条件或边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical solution of linear variable-coefficient partial differential equations with two independent variables based on Kida's optimum approximation theory
We derive a method of obtaining approximate numerical solution of linear variable-coefficient partial differential equations (PDEs) with two independent variables from Kida's optimum approximation theory. It is shown that a certain generalized filter bank implements linear PDEs. By applying generalized discrete orthogonality of Kida's optimum approximation to this filter bank, we prove that our approximate solution satisfies a given linear PDEs and the corresponding initial or boundary conditions at all given sample points, simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信