模仿任务中协调水平的自动识别

J-HGBU '11 Pub Date : 2011-12-01 DOI:10.1145/2072572.2072582
E. Delaherche, M. Chetouani
{"title":"模仿任务中协调水平的自动识别","authors":"E. Delaherche, M. Chetouani","doi":"10.1145/2072572.2072582","DOIUrl":null,"url":null,"abstract":"Automatic analysis of human-human degree of coordination bears challenging questions. In this paper, we propose to automatically predict the degree of coordination between dyadic partners performing an imitation task. A subjective evaluation of their coordination was obtained via a questionnaire addressed to human judges. We extracted features from speech, gestures segmentation and synchronized movements to predict the coordination status of each dyad. Several features discriminated perfectly the examples from the low and high coordination classes.","PeriodicalId":404943,"journal":{"name":"J-HGBU '11","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic recognition of coordination level in an imitation task\",\"authors\":\"E. Delaherche, M. Chetouani\",\"doi\":\"10.1145/2072572.2072582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic analysis of human-human degree of coordination bears challenging questions. In this paper, we propose to automatically predict the degree of coordination between dyadic partners performing an imitation task. A subjective evaluation of their coordination was obtained via a questionnaire addressed to human judges. We extracted features from speech, gestures segmentation and synchronized movements to predict the coordination status of each dyad. Several features discriminated perfectly the examples from the low and high coordination classes.\",\"PeriodicalId\":404943,\"journal\":{\"name\":\"J-HGBU '11\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J-HGBU '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2072572.2072582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J-HGBU '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2072572.2072582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人与人之间协调程度的自动分析面临着具有挑战性的问题。在本文中,我们提出了一种自动预测执行模仿任务的二元伙伴之间的协调程度的方法。通过对人类法官的问卷调查,对他们的协调进行了主观评价。我们从语音、手势分割和同步运动中提取特征来预测每一对的协调状态。几个特征很好地区分了高、低协调类的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic recognition of coordination level in an imitation task
Automatic analysis of human-human degree of coordination bears challenging questions. In this paper, we propose to automatically predict the degree of coordination between dyadic partners performing an imitation task. A subjective evaluation of their coordination was obtained via a questionnaire addressed to human judges. We extracted features from speech, gestures segmentation and synchronized movements to predict the coordination status of each dyad. Several features discriminated perfectly the examples from the low and high coordination classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信