基于手和身体骨骼数据的手语识别

D. Konstantinidis, K. Dimitropoulos, P. Daras
{"title":"基于手和身体骨骼数据的手语识别","authors":"D. Konstantinidis, K. Dimitropoulos, P. Daras","doi":"10.1109/3DTV.2018.8478467","DOIUrl":null,"url":null,"abstract":"Sign language recognition (SLR) is a challenging, but highly important research field for several computer vision systems that attempt to facilitate the communication among the deaf and hearing impaired people. In this work, we propose an accurate and robust deep learning-based methodology for sign language recognition from video sequences. Our novel method relies on hand and body skeletal features extracted from RGB videos and, therefore, it acquires highly discriminative for gesture recognition skeletal data without the need for any additional equipment, such as data gloves, that may restrict signer’s movements. Experimentation on a large publicly available sign language dataset reveals the superiority of our methodology with respect to other state of the art approaches relying solely on RGB features.","PeriodicalId":267389,"journal":{"name":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"SIGN LANGUAGE RECOGNITION BASED ON HAND AND BODY SKELETAL DATA\",\"authors\":\"D. Konstantinidis, K. Dimitropoulos, P. Daras\",\"doi\":\"10.1109/3DTV.2018.8478467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sign language recognition (SLR) is a challenging, but highly important research field for several computer vision systems that attempt to facilitate the communication among the deaf and hearing impaired people. In this work, we propose an accurate and robust deep learning-based methodology for sign language recognition from video sequences. Our novel method relies on hand and body skeletal features extracted from RGB videos and, therefore, it acquires highly discriminative for gesture recognition skeletal data without the need for any additional equipment, such as data gloves, that may restrict signer’s movements. Experimentation on a large publicly available sign language dataset reveals the superiority of our methodology with respect to other state of the art approaches relying solely on RGB features.\",\"PeriodicalId\":267389,\"journal\":{\"name\":\"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DTV.2018.8478467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2018.8478467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

手语识别(SLR)是一个具有挑战性的研究领域,但对于一些试图促进聋人和听障人士之间交流的计算机视觉系统来说,这是一个非常重要的研究领域。在这项工作中,我们提出了一种准确而稳健的基于深度学习的方法,用于从视频序列中识别手语。我们的新方法依赖于从RGB视频中提取的手和身体骨骼特征,因此,它获得了高度判别的手势识别骨骼数据,而不需要任何额外的设备,如数据手套,这可能会限制签署人的运动。在一个大型公开可用的手语数据集上的实验揭示了我们的方法相对于仅依赖RGB特征的其他最先进方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SIGN LANGUAGE RECOGNITION BASED ON HAND AND BODY SKELETAL DATA
Sign language recognition (SLR) is a challenging, but highly important research field for several computer vision systems that attempt to facilitate the communication among the deaf and hearing impaired people. In this work, we propose an accurate and robust deep learning-based methodology for sign language recognition from video sequences. Our novel method relies on hand and body skeletal features extracted from RGB videos and, therefore, it acquires highly discriminative for gesture recognition skeletal data without the need for any additional equipment, such as data gloves, that may restrict signer’s movements. Experimentation on a large publicly available sign language dataset reveals the superiority of our methodology with respect to other state of the art approaches relying solely on RGB features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信