基于人脸识别的智能课堂考勤系统设计

Wenxian Zeng, Qinglin Meng, Ran Li
{"title":"基于人脸识别的智能课堂考勤系统设计","authors":"Wenxian Zeng, Qinglin Meng, Ran Li","doi":"10.1109/ITNEC.2019.8729496","DOIUrl":null,"url":null,"abstract":"It is time-consuming and laborious for classroom attendance methods in Chinese universities, and the attendance costs are too high. In this paper, we use the deep learning related ideas to improve the AlexNet convolutional neural network, and use the WebFace data set to improve the network training and test. The Top-5 error rate is only 6.73%. We applied this model to face recognition and combined with RFID card reading technology, which developed a smart classroom attendance system based on face recognition. Research shows that the system is efficient and stable, which effectively reduce classroom attendance costs.","PeriodicalId":202966,"journal":{"name":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","volume":"81 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Design of Intelligent Classroom Attendance System Based on Face Recognition\",\"authors\":\"Wenxian Zeng, Qinglin Meng, Ran Li\",\"doi\":\"10.1109/ITNEC.2019.8729496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is time-consuming and laborious for classroom attendance methods in Chinese universities, and the attendance costs are too high. In this paper, we use the deep learning related ideas to improve the AlexNet convolutional neural network, and use the WebFace data set to improve the network training and test. The Top-5 error rate is only 6.73%. We applied this model to face recognition and combined with RFID card reading technology, which developed a smart classroom attendance system based on face recognition. Research shows that the system is efficient and stable, which effectively reduce classroom attendance costs.\",\"PeriodicalId\":202966,\"journal\":{\"name\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"volume\":\"81 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNEC.2019.8729496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC.2019.8729496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我国高校课堂出勤方式费时费力,出勤成本过高。在本文中,我们使用深度学习的相关思想来改进AlexNet卷积神经网络,并使用WebFace数据集来改进网络的训练和测试。前5名的错误率仅为6.73%。我们将该模型应用于人脸识别,并结合RFID卡读取技术,开发了基于人脸识别的智能课堂考勤系统。研究表明,该系统高效稳定,有效降低了课堂出勤成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Intelligent Classroom Attendance System Based on Face Recognition
It is time-consuming and laborious for classroom attendance methods in Chinese universities, and the attendance costs are too high. In this paper, we use the deep learning related ideas to improve the AlexNet convolutional neural network, and use the WebFace data set to improve the network training and test. The Top-5 error rate is only 6.73%. We applied this model to face recognition and combined with RFID card reading technology, which developed a smart classroom attendance system based on face recognition. Research shows that the system is efficient and stable, which effectively reduce classroom attendance costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信