George Retsinas, Athena Elafrou, G. Goumas, P. Maragos
{"title":"基于自适应稀疏度损失的在线权值修剪","authors":"George Retsinas, Athena Elafrou, G. Goumas, P. Maragos","doi":"10.1109/ICIP42928.2021.9506301","DOIUrl":null,"url":null,"abstract":"Pruning neural networks has regained interest in recent years as a means to compress state-of-the-art deep neural networks and enable their deployment on resource-constrained devices. In this paper, we propose a robust sparsity controlling framework that efficiently prunes network parameters during training with minimal computational overhead. We incorporate fast mechanisms to prune individual layers and build upon these to automatically prune the entire network under a user-defined budget constraint. Key to our end-to-end network pruning approach is the formulation of an intuitive and easy-to-implement adaptive sparsity loss used to explicitly control sparsity during training, enabling efficient budget-aware optimization.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Online Weight Pruning Via Adaptive Sparsity Loss\",\"authors\":\"George Retsinas, Athena Elafrou, G. Goumas, P. Maragos\",\"doi\":\"10.1109/ICIP42928.2021.9506301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pruning neural networks has regained interest in recent years as a means to compress state-of-the-art deep neural networks and enable their deployment on resource-constrained devices. In this paper, we propose a robust sparsity controlling framework that efficiently prunes network parameters during training with minimal computational overhead. We incorporate fast mechanisms to prune individual layers and build upon these to automatically prune the entire network under a user-defined budget constraint. Key to our end-to-end network pruning approach is the formulation of an intuitive and easy-to-implement adaptive sparsity loss used to explicitly control sparsity during training, enabling efficient budget-aware optimization.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pruning neural networks has regained interest in recent years as a means to compress state-of-the-art deep neural networks and enable their deployment on resource-constrained devices. In this paper, we propose a robust sparsity controlling framework that efficiently prunes network parameters during training with minimal computational overhead. We incorporate fast mechanisms to prune individual layers and build upon these to automatically prune the entire network under a user-defined budget constraint. Key to our end-to-end network pruning approach is the formulation of an intuitive and easy-to-implement adaptive sparsity loss used to explicitly control sparsity during training, enabling efficient budget-aware optimization.