{"title":"基于模糊逻辑的无线体域网络拥塞控制方案","authors":"Sara Ghanavati, Jemal H. Abawaji, D. Izadi","doi":"10.1109/NCA.2015.38","DOIUrl":null,"url":null,"abstract":"One of the major challenges in healthcare wireless body area network (WBAN) applications is to control congestion. Unpredictable traffic load, many-to-one communication nature and limited bandwidth occupancy are among major reasons that can cause congestion in such applications. Congestion has negative impacts on the overall network performance such as packet losses, increasing end-to-end delay and wasting energy consumption due to a large number of retransmissions. In life-critical applications, any delay in transmitting vital signals may lead to death of a patient. Therefore, in order to enhance the network quality of service (QoS), developing a solution for congestion estimation and control is imperative. In this paper, we propose a new congestion detection and control protocol for remote monitoring of patients health status using WBANs. The proposed system is able to detect congestion by considering local information such as buffer capacity and node rate. In case of congestion, the proposed system differentiates between vital signals and assigns priorities to them based on their level of importance. As a result, the proposed approach provides a better quality of service for transmitting highly important vital signs.","PeriodicalId":222162,"journal":{"name":"2015 IEEE 14th International Symposium on Network Computing and Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A Congestion Control Scheme Based on Fuzzy Logic in Wireless Body Area Networks\",\"authors\":\"Sara Ghanavati, Jemal H. Abawaji, D. Izadi\",\"doi\":\"10.1109/NCA.2015.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major challenges in healthcare wireless body area network (WBAN) applications is to control congestion. Unpredictable traffic load, many-to-one communication nature and limited bandwidth occupancy are among major reasons that can cause congestion in such applications. Congestion has negative impacts on the overall network performance such as packet losses, increasing end-to-end delay and wasting energy consumption due to a large number of retransmissions. In life-critical applications, any delay in transmitting vital signals may lead to death of a patient. Therefore, in order to enhance the network quality of service (QoS), developing a solution for congestion estimation and control is imperative. In this paper, we propose a new congestion detection and control protocol for remote monitoring of patients health status using WBANs. The proposed system is able to detect congestion by considering local information such as buffer capacity and node rate. In case of congestion, the proposed system differentiates between vital signals and assigns priorities to them based on their level of importance. As a result, the proposed approach provides a better quality of service for transmitting highly important vital signs.\",\"PeriodicalId\":222162,\"journal\":{\"name\":\"2015 IEEE 14th International Symposium on Network Computing and Applications\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th International Symposium on Network Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCA.2015.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Symposium on Network Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2015.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Congestion Control Scheme Based on Fuzzy Logic in Wireless Body Area Networks
One of the major challenges in healthcare wireless body area network (WBAN) applications is to control congestion. Unpredictable traffic load, many-to-one communication nature and limited bandwidth occupancy are among major reasons that can cause congestion in such applications. Congestion has negative impacts on the overall network performance such as packet losses, increasing end-to-end delay and wasting energy consumption due to a large number of retransmissions. In life-critical applications, any delay in transmitting vital signals may lead to death of a patient. Therefore, in order to enhance the network quality of service (QoS), developing a solution for congestion estimation and control is imperative. In this paper, we propose a new congestion detection and control protocol for remote monitoring of patients health status using WBANs. The proposed system is able to detect congestion by considering local information such as buffer capacity and node rate. In case of congestion, the proposed system differentiates between vital signals and assigns priorities to them based on their level of importance. As a result, the proposed approach provides a better quality of service for transmitting highly important vital signs.