基于学习的表面光场压缩用于全局照明场景的实时渲染

Ehsan Miandji, J. Kronander, J. Unger
{"title":"基于学习的表面光场压缩用于全局照明场景的实时渲染","authors":"Ehsan Miandji, J. Kronander, J. Unger","doi":"10.1145/2542355.2542385","DOIUrl":null,"url":null,"abstract":"We present an algorithm for compression and real-time rendering of surface light fields (SLF) encoding the visual appearance of objects in static scenes with high frequency variations. We apply a non-local clustering in order to exploit spatial coherence in the SLF data. To efficiently encode the data in each cluster, we introduce a learning based approach, Clustered Exemplar Orthogonal Bases (CEOB), which trains a compact dictionary of orthogonal basis pairs, enabling efficient sparse projection of the SLF data. In addition, we discuss the application of the traditional Clustered Principal Component Analysis (CPCA) on SLF data, and show that in most cases, CEOB outperforms CPCA, K-SVD and spherical harmonics in terms of memory footprint, rendering performance and reconstruction quality. Our method enables efficient reconstruction and real-time rendering of scenes with complex materials and light sources, not possible to render in real-time using previous methods.","PeriodicalId":232593,"journal":{"name":"SIGGRAPH Asia 2013 Technical Briefs","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Learning based compression of surface light fields for real-time rendering of global illumination scenes\",\"authors\":\"Ehsan Miandji, J. Kronander, J. Unger\",\"doi\":\"10.1145/2542355.2542385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for compression and real-time rendering of surface light fields (SLF) encoding the visual appearance of objects in static scenes with high frequency variations. We apply a non-local clustering in order to exploit spatial coherence in the SLF data. To efficiently encode the data in each cluster, we introduce a learning based approach, Clustered Exemplar Orthogonal Bases (CEOB), which trains a compact dictionary of orthogonal basis pairs, enabling efficient sparse projection of the SLF data. In addition, we discuss the application of the traditional Clustered Principal Component Analysis (CPCA) on SLF data, and show that in most cases, CEOB outperforms CPCA, K-SVD and spherical harmonics in terms of memory footprint, rendering performance and reconstruction quality. Our method enables efficient reconstruction and real-time rendering of scenes with complex materials and light sources, not possible to render in real-time using previous methods.\",\"PeriodicalId\":232593,\"journal\":{\"name\":\"SIGGRAPH Asia 2013 Technical Briefs\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2013 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2542355.2542385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2013 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2542355.2542385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一种压缩和实时渲染表面光场(SLF)的算法,用于编码高频变化静态场景中物体的视觉外观。为了利用SLF数据中的空间相干性,我们应用了非局部聚类。为了有效地编码每个聚类中的数据,我们引入了一种基于学习的方法,聚类范例正交基(CEOB),该方法训练了一个正交基对的紧凑字典,从而实现了SLF数据的高效稀疏投影。此外,我们讨论了传统的聚类主成分分析(CPCA)在SLF数据上的应用,并表明在大多数情况下,CEOB在内存占用、渲染性能和重建质量方面优于CPCA、K-SVD和球面谐波。我们的方法能够有效地重建和实时渲染具有复杂材料和光源的场景,这是以前的方法无法实时渲染的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning based compression of surface light fields for real-time rendering of global illumination scenes
We present an algorithm for compression and real-time rendering of surface light fields (SLF) encoding the visual appearance of objects in static scenes with high frequency variations. We apply a non-local clustering in order to exploit spatial coherence in the SLF data. To efficiently encode the data in each cluster, we introduce a learning based approach, Clustered Exemplar Orthogonal Bases (CEOB), which trains a compact dictionary of orthogonal basis pairs, enabling efficient sparse projection of the SLF data. In addition, we discuss the application of the traditional Clustered Principal Component Analysis (CPCA) on SLF data, and show that in most cases, CEOB outperforms CPCA, K-SVD and spherical harmonics in terms of memory footprint, rendering performance and reconstruction quality. Our method enables efficient reconstruction and real-time rendering of scenes with complex materials and light sources, not possible to render in real-time using previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信