{"title":"复傅立叶级数展开式早期行权期权套期保值与定价","authors":"Ron T. L. Chan","doi":"10.2139/ssrn.3108693","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a new numerical method called the complex Fourier series (CFS) method proposed by Chan (2017) to price options with an early-exercise feature—American, Bermudan and discretely monitored barrier options—under exponential Levy asset dynamics. This new method allows us to quickly and accurately compute the values of early-exercise options and their Greeks. We also provide an error analysis to demonstrate that, in many cases, we can achieve an exponential convergence rate in the pricing method as long as we choose the correct truncated computational interval. Our numerical analysis indicates that the CFS method is computationally more comparable or favourable than the methods currently available. Finally, the superiority of the CFS method is illustrated with real financial data by considering Standard & Poor’s depositary receipts (SPDR) exchange-traded fund (ETF) on the S&P 500® index options, which are American options traded from November 2017 to February 2018 and from 30 January 2019 to 21 June 2019.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Hedging and Pricing Early-Exercise Options With Complex Fourier Series Expansion\",\"authors\":\"Ron T. L. Chan\",\"doi\":\"10.2139/ssrn.3108693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce a new numerical method called the complex Fourier series (CFS) method proposed by Chan (2017) to price options with an early-exercise feature—American, Bermudan and discretely monitored barrier options—under exponential Levy asset dynamics. This new method allows us to quickly and accurately compute the values of early-exercise options and their Greeks. We also provide an error analysis to demonstrate that, in many cases, we can achieve an exponential convergence rate in the pricing method as long as we choose the correct truncated computational interval. Our numerical analysis indicates that the CFS method is computationally more comparable or favourable than the methods currently available. Finally, the superiority of the CFS method is illustrated with real financial data by considering Standard & Poor’s depositary receipts (SPDR) exchange-traded fund (ETF) on the S&P 500® index options, which are American options traded from November 2017 to February 2018 and from 30 January 2019 to 21 June 2019.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3108693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3108693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hedging and Pricing Early-Exercise Options With Complex Fourier Series Expansion
Abstract We introduce a new numerical method called the complex Fourier series (CFS) method proposed by Chan (2017) to price options with an early-exercise feature—American, Bermudan and discretely monitored barrier options—under exponential Levy asset dynamics. This new method allows us to quickly and accurately compute the values of early-exercise options and their Greeks. We also provide an error analysis to demonstrate that, in many cases, we can achieve an exponential convergence rate in the pricing method as long as we choose the correct truncated computational interval. Our numerical analysis indicates that the CFS method is computationally more comparable or favourable than the methods currently available. Finally, the superiority of the CFS method is illustrated with real financial data by considering Standard & Poor’s depositary receipts (SPDR) exchange-traded fund (ETF) on the S&P 500® index options, which are American options traded from November 2017 to February 2018 and from 30 January 2019 to 21 June 2019.