变轴复合材料结构的大尺度三维各向异性拓扑优化

Yuqing Zhou, T. Nomura, Enpei Zhao, Wei Zhang, K. Saitou
{"title":"变轴复合材料结构的大尺度三维各向异性拓扑优化","authors":"Yuqing Zhou, T. Nomura, Enpei Zhao, Wei Zhang, K. Saitou","doi":"10.1115/detc2020-22509","DOIUrl":null,"url":null,"abstract":"\n Variable-axial fiber-reinforced composites allow for local customization of fiber orientation and thicknesses. Despite their significant potential for performance improvement over the conventional multiaxial composites and metals, they pose challenges in design optimization due to the vastly increased design freedom in material orientations. This paper presents an anisotropic topology optimization (TO) method for designing large-scale, 3D variable-axial composite structures. The computational challenge for large-scale 3D TO with extremely low volume fraction is addressed by a tensor-based representation of 3D orientation that would avoid the 2π periodicity of angular representation such as Eular angles, and an adaptive meshing scheme, which, in conjunction with PDE regularization of the density variables, refines the mesh where structural members appear and coarsens where there is void. The proposed method is applied to designing a heavy-duty drone frame subject to complex multi-loading conditions. Finally, the manufacturability gaps between the optimized design and the fabrication-ready design for Tailored Fiber Placement (TFP) is discussed, which motivates future work toward fully-automated design synthesis.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Three-Dimensional Anisotropic Topology Optimization of Variable-Axial Composite Structures\",\"authors\":\"Yuqing Zhou, T. Nomura, Enpei Zhao, Wei Zhang, K. Saitou\",\"doi\":\"10.1115/detc2020-22509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Variable-axial fiber-reinforced composites allow for local customization of fiber orientation and thicknesses. Despite their significant potential for performance improvement over the conventional multiaxial composites and metals, they pose challenges in design optimization due to the vastly increased design freedom in material orientations. This paper presents an anisotropic topology optimization (TO) method for designing large-scale, 3D variable-axial composite structures. The computational challenge for large-scale 3D TO with extremely low volume fraction is addressed by a tensor-based representation of 3D orientation that would avoid the 2π periodicity of angular representation such as Eular angles, and an adaptive meshing scheme, which, in conjunction with PDE regularization of the density variables, refines the mesh where structural members appear and coarsens where there is void. The proposed method is applied to designing a heavy-duty drone frame subject to complex multi-loading conditions. Finally, the manufacturability gaps between the optimized design and the fabrication-ready design for Tailored Fiber Placement (TFP) is discussed, which motivates future work toward fully-automated design synthesis.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可变轴向纤维增强复合材料允许纤维取向和厚度的局部定制。尽管与传统的多轴复合材料和金属相比,它们具有显著的性能改进潜力,但由于材料取向的设计自由度大大增加,它们在设计优化方面提出了挑战。提出了一种设计大型三维变轴复合材料结构的各向异性拓扑优化方法。对于具有极低体积分数的大规模3D TO的计算挑战是通过基于张量的3D方向表示来解决的,该表示可以避免角表示(如欧拉角)的2π周期性,以及自适应网格划分方案,该方案与密度变量的PDE正则化相结合,可以细化出现结构成员的网格,并粗糙存在空隙的网格。将该方法应用于复杂多载荷条件下的重型无人机框架设计。最后,讨论了定制纤维放置(TFP)的优化设计与制造就绪设计之间的可制造性差距,这激励了未来全自动设计综合的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Scale Three-Dimensional Anisotropic Topology Optimization of Variable-Axial Composite Structures
Variable-axial fiber-reinforced composites allow for local customization of fiber orientation and thicknesses. Despite their significant potential for performance improvement over the conventional multiaxial composites and metals, they pose challenges in design optimization due to the vastly increased design freedom in material orientations. This paper presents an anisotropic topology optimization (TO) method for designing large-scale, 3D variable-axial composite structures. The computational challenge for large-scale 3D TO with extremely low volume fraction is addressed by a tensor-based representation of 3D orientation that would avoid the 2π periodicity of angular representation such as Eular angles, and an adaptive meshing scheme, which, in conjunction with PDE regularization of the density variables, refines the mesh where structural members appear and coarsens where there is void. The proposed method is applied to designing a heavy-duty drone frame subject to complex multi-loading conditions. Finally, the manufacturability gaps between the optimized design and the fabrication-ready design for Tailored Fiber Placement (TFP) is discussed, which motivates future work toward fully-automated design synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信