基于交通监控流数据的即时旅伴发现

IEEE WISA Pub Date : 2016-09-01 DOI:10.1109/WISA.2016.27
Xiongbin Wang, Chen Liu, Meiling Zhu
{"title":"基于交通监控流数据的即时旅伴发现","authors":"Xiongbin Wang, Chen Liu, Meiling Zhu","doi":"10.1109/WISA.2016.27","DOIUrl":null,"url":null,"abstract":"Traveling companions are object groups that move together in a period of time. To quickly identify traveling companions from a special kind of streaming traffic data, called Automatic Number Plate Recognition (ANPR) data, this paper proposes a framework and several algorithms to discover companion vehicles. Compared to related approaches, our main contribution is that the framework can instantly detect suspicious companion vehicles with their probabilities when they pass through monitoring cameras. Our framework can be used in many time-sensitive scenarios like taking surveillance on the suspect trackers for specific vehicles. Experiments show that our approach can process streaming ANPR data directly and discover the companion vehicles in nearly real time.","PeriodicalId":178339,"journal":{"name":"IEEE WISA","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Instant Traveling Companion Discovery Based on Traffic-Monitoring Streaming Data\",\"authors\":\"Xiongbin Wang, Chen Liu, Meiling Zhu\",\"doi\":\"10.1109/WISA.2016.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traveling companions are object groups that move together in a period of time. To quickly identify traveling companions from a special kind of streaming traffic data, called Automatic Number Plate Recognition (ANPR) data, this paper proposes a framework and several algorithms to discover companion vehicles. Compared to related approaches, our main contribution is that the framework can instantly detect suspicious companion vehicles with their probabilities when they pass through monitoring cameras. Our framework can be used in many time-sensitive scenarios like taking surveillance on the suspect trackers for specific vehicles. Experiments show that our approach can process streaming ANPR data directly and discover the companion vehicles in nearly real time.\",\"PeriodicalId\":178339,\"journal\":{\"name\":\"IEEE WISA\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE WISA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2016.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE WISA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2016.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

旅伴是在一段时间内一起移动的对象组。为了从一种特殊的流交通数据——自动车牌识别(ANPR)数据中快速识别出伴行车辆,本文提出了一个框架和几种算法来发现伴行车辆。与相关方法相比,我们的主要贡献在于,该框架可以在通过监控摄像头时立即检测到可疑的同伴车辆及其概率。我们的框架可以用于许多时间敏感的场景,比如对特定车辆的可疑跟踪器进行监视。实验表明,该方法可以直接处理流ANPR数据,并能近乎实时地发现伴行车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instant Traveling Companion Discovery Based on Traffic-Monitoring Streaming Data
Traveling companions are object groups that move together in a period of time. To quickly identify traveling companions from a special kind of streaming traffic data, called Automatic Number Plate Recognition (ANPR) data, this paper proposes a framework and several algorithms to discover companion vehicles. Compared to related approaches, our main contribution is that the framework can instantly detect suspicious companion vehicles with their probabilities when they pass through monitoring cameras. Our framework can be used in many time-sensitive scenarios like taking surveillance on the suspect trackers for specific vehicles. Experiments show that our approach can process streaming ANPR data directly and discover the companion vehicles in nearly real time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信