基于集成学习的Wi-Fi网络入侵检测系统

Francisco D. Vaca, Quamar Niyaz
{"title":"基于集成学习的Wi-Fi网络入侵检测系统","authors":"Francisco D. Vaca, Quamar Niyaz","doi":"10.1109/NCA.2018.8548315","DOIUrl":null,"url":null,"abstract":"As the use of Wi-Fi networks grows, so does the increase in security threats. Attackers continue to improve their attack methods, which create the need for developing effective mechanisms to detect the sophisticated attacks. In this work, we propose an implementation of intrusion detection system for Wi-Fi networks using an ensemble learning method. The AWID Wi-Fi intrusion dataset is used to discover the necessary features needed for the efficient IDS implementation. We apply several ensemble learning methods on this dataset and finalize the best one for the proposed IDS implementation. The performance of IDS is reported using well-known metrics including accuracy, precision, recall, and f-measure.","PeriodicalId":268662,"journal":{"name":"2018 IEEE 17th International Symposium on Network Computing and Applications (NCA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"An Ensemble Learning Based Wi-Fi Network Intrusion Detection System (WNIDS)\",\"authors\":\"Francisco D. Vaca, Quamar Niyaz\",\"doi\":\"10.1109/NCA.2018.8548315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the use of Wi-Fi networks grows, so does the increase in security threats. Attackers continue to improve their attack methods, which create the need for developing effective mechanisms to detect the sophisticated attacks. In this work, we propose an implementation of intrusion detection system for Wi-Fi networks using an ensemble learning method. The AWID Wi-Fi intrusion dataset is used to discover the necessary features needed for the efficient IDS implementation. We apply several ensemble learning methods on this dataset and finalize the best one for the proposed IDS implementation. The performance of IDS is reported using well-known metrics including accuracy, precision, recall, and f-measure.\",\"PeriodicalId\":268662,\"journal\":{\"name\":\"2018 IEEE 17th International Symposium on Network Computing and Applications (NCA)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 17th International Symposium on Network Computing and Applications (NCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCA.2018.8548315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 17th International Symposium on Network Computing and Applications (NCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2018.8548315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

随着Wi-Fi网络使用的增加,安全威胁也在增加。攻击者不断改进他们的攻击方法,这就需要开发有效的机制来检测复杂的攻击。在这项工作中,我们提出了一种采用集成学习方法的Wi-Fi网络入侵检测系统的实现。AWID Wi-Fi入侵数据集用于发现有效实施入侵检测所需的必要特征。我们在该数据集上应用了几种集成学习方法,并最终确定了用于所提出的IDS实现的最佳方法。IDS的性能报告使用众所周知的指标,包括准确性、精密度、召回率和f-measure。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ensemble Learning Based Wi-Fi Network Intrusion Detection System (WNIDS)
As the use of Wi-Fi networks grows, so does the increase in security threats. Attackers continue to improve their attack methods, which create the need for developing effective mechanisms to detect the sophisticated attacks. In this work, we propose an implementation of intrusion detection system for Wi-Fi networks using an ensemble learning method. The AWID Wi-Fi intrusion dataset is used to discover the necessary features needed for the efficient IDS implementation. We apply several ensemble learning methods on this dataset and finalize the best one for the proposed IDS implementation. The performance of IDS is reported using well-known metrics including accuracy, precision, recall, and f-measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信