人脸验证的逻辑相似性度量学习

Lilei Zheng, Khalid Idrissi, Christophe Garcia, S. Duffner, A. Baskurt
{"title":"人脸验证的逻辑相似性度量学习","authors":"Lilei Zheng, Khalid Idrissi, Christophe Garcia, S. Duffner, A. Baskurt","doi":"10.1109/ICASSP.2015.7178311","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for similarity metric learning, called Logistic Similarity Metric Learning (LSML), where the cost is formulated as the logistic loss function, which gives a probability estimation of a pair of faces being similar. Especially, we propose to shift the similarity decision boundary gaining significant performance improvement. We test the proposed method on the face verification problem using four single face descriptors: LBP, OCLBP, SIFT and Gabor wavelets. Extensive experimental results on the LFW-a data set demonstrate that the proposed method achieves competitive state-of-the-art performance on the problem of face verification.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Logistic similarity metric learning for face verification\",\"authors\":\"Lilei Zheng, Khalid Idrissi, Christophe Garcia, S. Duffner, A. Baskurt\",\"doi\":\"10.1109/ICASSP.2015.7178311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for similarity metric learning, called Logistic Similarity Metric Learning (LSML), where the cost is formulated as the logistic loss function, which gives a probability estimation of a pair of faces being similar. Especially, we propose to shift the similarity decision boundary gaining significant performance improvement. We test the proposed method on the face verification problem using four single face descriptors: LBP, OCLBP, SIFT and Gabor wavelets. Extensive experimental results on the LFW-a data set demonstrate that the proposed method achieves competitive state-of-the-art performance on the problem of face verification.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一种新的相似度度量学习方法——Logistic相似度度量学习(LSML),该方法将代价表示为逻辑损失函数,给出了一对人脸相似的概率估计。特别是,我们提出了移动相似决策边界的方法,获得了显著的性能改进。我们使用LBP、OCLBP、SIFT和Gabor四种单人脸描述子对该方法进行了人脸验证问题的测试。在LFW-a数据集上的大量实验结果表明,该方法在人脸验证问题上取得了具有竞争力的最新性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logistic similarity metric learning for face verification
This paper presents a new method for similarity metric learning, called Logistic Similarity Metric Learning (LSML), where the cost is formulated as the logistic loss function, which gives a probability estimation of a pair of faces being similar. Especially, we propose to shift the similarity decision boundary gaining significant performance improvement. We test the proposed method on the face verification problem using four single face descriptors: LBP, OCLBP, SIFT and Gabor wavelets. Extensive experimental results on the LFW-a data set demonstrate that the proposed method achieves competitive state-of-the-art performance on the problem of face verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信