基于无监督学习的认知无线网络资源分配

Yang Yu, Yinchao Ge, Jiangchen Zhang, Quanwen Fang
{"title":"基于无监督学习的认知无线网络资源分配","authors":"Yang Yu, Yinchao Ge, Jiangchen Zhang, Quanwen Fang","doi":"10.1109/EEI59236.2023.10212587","DOIUrl":null,"url":null,"abstract":"Cognitive radio technology allows secondary users (SUs) to opportunistically access licensed spectrum to improve the spectral efficiency of communication systems. In this paper, by utilizing deep neural networks (DNNs), we study the resource allocation of the SUs in cognitive radio networks (CRN) and propose a scheme based on unsupervised learning to maximize the sum rate of the SUs. The proposed scheme ensures that the interference caused to primary users (PUs) does not exceed a predefined threshold. We also discuss the quality of service (QoS) requirements of the SUs. The numerical simulation results show that the proposed scheme achieves a higher sum rate with low computation time.","PeriodicalId":363603,"journal":{"name":"2023 5th International Conference on Electronic Engineering and Informatics (EEI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Learning-Based Resource Allocation for Cognitive Radio Networks\",\"authors\":\"Yang Yu, Yinchao Ge, Jiangchen Zhang, Quanwen Fang\",\"doi\":\"10.1109/EEI59236.2023.10212587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive radio technology allows secondary users (SUs) to opportunistically access licensed spectrum to improve the spectral efficiency of communication systems. In this paper, by utilizing deep neural networks (DNNs), we study the resource allocation of the SUs in cognitive radio networks (CRN) and propose a scheme based on unsupervised learning to maximize the sum rate of the SUs. The proposed scheme ensures that the interference caused to primary users (PUs) does not exceed a predefined threshold. We also discuss the quality of service (QoS) requirements of the SUs. The numerical simulation results show that the proposed scheme achieves a higher sum rate with low computation time.\",\"PeriodicalId\":363603,\"journal\":{\"name\":\"2023 5th International Conference on Electronic Engineering and Informatics (EEI)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 5th International Conference on Electronic Engineering and Informatics (EEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEI59236.2023.10212587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Conference on Electronic Engineering and Informatics (EEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEI59236.2023.10212587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

认知无线电技术允许辅助用户(su)机会地访问许可频谱,以提高通信系统的频谱效率。本文利用深度神经网络(dnn)研究了认知无线网络(CRN)中单元的资源分配问题,提出了一种基于无监督学习的单元和速率最大化方案。该方案确保对主用户(pu)造成的干扰不超过预定义的阈值。我们还讨论了单元的服务质量(QoS)需求。数值模拟结果表明,该方案在较短的计算时间内实现了较高的和速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Learning-Based Resource Allocation for Cognitive Radio Networks
Cognitive radio technology allows secondary users (SUs) to opportunistically access licensed spectrum to improve the spectral efficiency of communication systems. In this paper, by utilizing deep neural networks (DNNs), we study the resource allocation of the SUs in cognitive radio networks (CRN) and propose a scheme based on unsupervised learning to maximize the sum rate of the SUs. The proposed scheme ensures that the interference caused to primary users (PUs) does not exceed a predefined threshold. We also discuss the quality of service (QoS) requirements of the SUs. The numerical simulation results show that the proposed scheme achieves a higher sum rate with low computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信