基于CNN-LSTM深度神经网络的频谱感知方法

Shujian Zhang, Zhan Xu, Lu Tian, Xiaolong Yang
{"title":"基于CNN-LSTM深度神经网络的频谱感知方法","authors":"Shujian Zhang, Zhan Xu, Lu Tian, Xiaolong Yang","doi":"10.1109/IC-NIDC54101.2021.9660470","DOIUrl":null,"url":null,"abstract":"Spectrum sensing can effectively improve the low utilization of spectrum resources and is one of the crucial components of cognitive radio networks. This paper proposes a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network cascaded spectrum sensing model. The model uses CNN to analyze the Short-Time Fourier transform spectrogram of the blind signal. Then the generated feature vector or feature map is passed to the LSTM according to the timestamp. Finally, it detects a signal in a specific spectrum and classifies the signal type to identify multiple signals accurately. The neural network model improves the detection probability by simultaneously acquiring the spatial and temporal characteristics of the blind signal. The experimental results show that the method in this paper can detect a variety of signals with higher detection probability within a wide range of SNR, especially under the condition of low SNR.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spectrum Sensing Method Based on CNN-LSTM Deep Neural Network\",\"authors\":\"Shujian Zhang, Zhan Xu, Lu Tian, Xiaolong Yang\",\"doi\":\"10.1109/IC-NIDC54101.2021.9660470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectrum sensing can effectively improve the low utilization of spectrum resources and is one of the crucial components of cognitive radio networks. This paper proposes a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network cascaded spectrum sensing model. The model uses CNN to analyze the Short-Time Fourier transform spectrogram of the blind signal. Then the generated feature vector or feature map is passed to the LSTM according to the timestamp. Finally, it detects a signal in a specific spectrum and classifies the signal type to identify multiple signals accurately. The neural network model improves the detection probability by simultaneously acquiring the spatial and temporal characteristics of the blind signal. The experimental results show that the method in this paper can detect a variety of signals with higher detection probability within a wide range of SNR, especially under the condition of low SNR.\",\"PeriodicalId\":264468,\"journal\":{\"name\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC-NIDC54101.2021.9660470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

频谱感知可以有效改善频谱资源利用率低的现状,是认知无线电网络的重要组成部分之一。提出了一种卷积神经网络(CNN)和长短期记忆(LSTM)网络级联的频谱感知模型。该模型利用CNN对盲信号的短时傅里叶变换谱图进行分析。然后根据时间戳将生成的特征向量或特征映射传递给LSTM。最后,对特定频谱中的信号进行检测,并对信号类型进行分类,以准确识别多个信号。该神经网络模型通过同时获取盲信号的时空特征来提高检测概率。实验结果表明,本文方法可以在较宽的信噪比范围内,特别是在低信噪比条件下,以较高的检测概率检测多种信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Spectrum Sensing Method Based on CNN-LSTM Deep Neural Network
Spectrum sensing can effectively improve the low utilization of spectrum resources and is one of the crucial components of cognitive radio networks. This paper proposes a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network cascaded spectrum sensing model. The model uses CNN to analyze the Short-Time Fourier transform spectrogram of the blind signal. Then the generated feature vector or feature map is passed to the LSTM according to the timestamp. Finally, it detects a signal in a specific spectrum and classifies the signal type to identify multiple signals accurately. The neural network model improves the detection probability by simultaneously acquiring the spatial and temporal characteristics of the blind signal. The experimental results show that the method in this paper can detect a variety of signals with higher detection probability within a wide range of SNR, especially under the condition of low SNR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信